Publications

Refereed Articles

   
  1. Okui, H., K. Sato, D. Koshin, and S. Watanabe (2021),
    Formation of a mesospheric inversion layer and the subsequent elevated stratopause associated with the major stratospheric sudden warming in 2018/19,
    J. Geophys. Res. Atmos., accepted. https://doi.org/10.1029/2021JD034681 URL
  2. Kohma, M., K. Sato, K. Nishimura, and M. Tsutsumi (2021),
    Weakening of PMWE and Turbulent Energy Dissipation Rates after a Stratospheric Sudden Warming in the Southern Hemisphere in 2019,
    Geophys. Res. Lett., 48, e2021GL092705. https;//doi:10.1029/2021GL092705. URL
  3. Hirano, S., M. Kohma, and K. Sato (2021), Interannual Variability of Stratospheric Final Warming in the Southern Hemisphere and its Tropospheric Origin,
    J. Climate, 34, 6115-6128. https://doi.org/10.1175/JCLI-D-20-0945.1 URL
  4. McCormack, J. P., V. L. Harvey, N. Pedatella, D. Koshin, K. Sato, L. Coy, S. Watanabe, C. E. Randall, F. Sassi, and L. Holt (2021),
    Intercomparison of Middle Atmospheric Meteorological Analyses for the Northern Hemisphere Winter 2009–2010,
    Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-224, in review. URL
  5. Koshin, D., K. Sato, M. Kohma, and S. Watanabe (2021),
    An update on the 4D-LETKF data assimilation system for the whole neutral atmosphere,
    Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-381, in review. URL
  6. Amemiya, A. and K. Sato, (2020),
    Characterizing quasi-biweekly variability of the Asian monsoon anticyclone using potential vorticity and large-scale geopotential field,
    Atmos. Chem, Phys., 20, 13857–13876. https://doi.org/10.5194/acp-20-13857-2020. URL
  7. Matsuoka, D., S. Watanabe, K. Sato, S. Kawazoe, W. Yu, and S. Easterbrook (2020),
    Application of deep learning to estimate atmospheric gravity wave parameters in reanalysis data sets.
    Geophys. Res. Lett., 47, e2020GL089436. https://doi.org/10.1029/2020GL089436. URL
  8. Kohma, M., K. Sato, K. Nishimura, M. Tsutsumi, and T. Sato (2020),
    A statistical analysis of the energy dissipation rate estimated from the PMWE spectral width in the Antarctic.
    J. Geophys. Res. Atmos., 125, e2020JD032745. doi:10.1029/2020JD032745. URL
  9. Minamihara, Y., K. Sato, and M. Tsutsumi (2020),
    Intermittency of gravity waves in the Antarctic troposphere and lower stratosphere revealed by the PANSY radar observation.
    J. Geophys. Res. Atmos., 125, e2020JD032543. doi:10.1029/2020JD032543. URL
  10. Koshin, D., K. Sato, K. Miyazaki, and S. Watanabe (2020),
    An ensemble Kalman filter data assimilation system for the whole neutral atmosphere.
    Geoscientific Model Development, 13, 3145–3177. doi:10.5194/gmd-13-3145-2020.URL
  11. Okui, H., and K. Sato (2020),
    Characteristics and Sources of Gravity Waves in the Summer Stratosphere Based on Long-Term and High-Resolution Radiosonde Observations.
    SOLA., 16, 64-69. doi:10.2151/sola.2020-011. URL
  12. Matsushita, Y., D. Kado, M. Kohma, and K. Sato (2020),
    Relation Between the Interannual Variability in the Stratospheric Rossby Wave Forcing and Zonal Mean Fields Suggesting an Interhemispheric Link in the Stratosphere.
    Ann. Geophys., 38, 319–329. doi:10.5194/angeo-38-319-2020. URL
  13. Nishimura, K., M. Kohma, K. Sato, and T. Sato (2019),
    Spectral Observation Theory and Beam De-Broadening Algorithm for Atmospheric Radar.
    IEEE Transactions on Geoscience and Remote Sensing, doi:10.1109/TGRS.2020.2970200.URL
  14. Tanaka, Y.‐M., T. Nishiyama, A. Kadokura, M. Ozaki, Y. Miyoshi, K. Shiokawa, et al. including K. Sato (2019),
    Direct comparison between magnetospheric plasma waves and polar mesosphere winter echoes in both hemispheres.
    J. Geophys. Res. Space Phys., 124. doi:10.1029/2019JA026891. URL
  15. Baldwin, M. P., T. Birner, G. Brasseur, J. Burrows, N. Butchart, R. Garcia, M. Geller, L. Gray, K. Hamilton, N. Harnik, M. I. Hegglin, U. Langematz, A. Robock, K. Sato, and A. Scaife (2019),
    100 Years of Progress in Understanding the Stratosphere and Mesosphere.
    Meteorological Monographs, 59, 27.1–27.62. doi:10.1175/AMSMONOGRAPHS-D-19-0003.1. URL
  16. Kawatani, Y., K. Hamilton, K. Sato, T. J. Dunkerton, S. Watanabe and K. Kikuchi (2019),
    ENSO modulation of the QBO: Results from MIROC models with and without non-orographic gravity wave parameterization.
    J. Atmos. Sci., 76, 3893–3897. doi:10.1175/JAS-D-19-0163.1. URL
  17. Kohma, M. and K. Sato (2019),
    A diagnostic equation for tendency of lapse-rate-tropopause heights and its application.
    J. Atmos. Sci., 76, 3337–3350. doi:10.1175/JAS-D-19-0054.1. URL
  18. Hashimoto, T., A. Saito, K. Nishimura, M. Tsutsumi, K. Sato, and T. Sato (2019),
    First incoherent scatter measurements and adaptive suppression of field-aligned irregularities by the PANSY radar at Syowa Station, Antarctic.
    J. Atmos. Oceanic Technol., 36, 1881–1888, doi:10.1175/JTECH-D-18-0175.1. URL
  19. Harada, Y., K. Sato, T. Kinoshita, R. Yasui, T. Hirooka, and H. Naoe (2019),
    Diagnostics of a WN2‐type major sudden stratospheric warming event in February 2018 using a new three‐dimensional wave activity flux.
    J. Geophys. Res. Atmos., 124, 6120–6142. doi:10.1029/2018JD030162. URL
  20. Sato, K., and S. Hirano (2019),
    The climatology of Brewer-Dobson circulation and the contribution of gravity waves,
    Atmos. Chem, Phys., 19, 4517-4539. https://doi.org/10.5194/acp-19-4517-2019. URL
  21. Kinoshita, T., K. Sato, K. Ishijima, M. Takigawa, and Y. Yamashita (2019),
    Formulation of three-dimensional quasi-residual mean flow balanced with diabatic heating rate and potential vorticity flux,
    J. Atmos. Sci., 76, 851–863. doi:10.1175/JAS-D-18-0085.1. URL
  22. Shibuya, R., and K. Sato (2019),
    A study of the dynamical characteristics of inertia–gravity waves in the Antarctic mesosphere combining the PANSY radar and a non-hydrostatic general circulation model,
    Atmos. Chem, Phys., 19, 3395-3415. doi:10.5194/acp-19-3395-2019. URL
  23. Kataoka, R., T. Nishiyama, Y. Tanaka, A. Kadokura, H. A. Uchida, Y. Ebihara, M. K. Ejiri, Y. Tomikawa, M. Tsutsumi, K. Sato, Y. Miyoshi, K. Shiokawa, S. Kurita, Y. Kasahara, M. Ozaki, K. Hosokawa, S. Matsuda, I. Shionohara, T. Takashima, T. Sato, T. Mitani, T. Hori, N. Higashio (2019),
    Transient ionization of the mesosphere during auroral breakup: Arase satellite and ground-based conjugate observations at Syowa Station,
    Earth, Planets and Space, 71:9. doi:10.1186/s40623-019-0989-7. URL
  24. Kohma, M., K. Sato, Y. Tomikawa, K. Nishimura, and T. Sato (2019),
    Estimate of turbulent energy dissipation rate from the VHF radar and radiosonde observations in the Antarctic,
    J. Geophys. Res. Atmos., 124, 2976–2993. doi:10.1029/2018JD029521. URL
  25. Müller, S. K., E. Manzini, M. A. Giorgetta, K. Sato, and T. Nasuno (2018),
    Convectively generated gravity waves in high resolution models of tropical dynamics,
    J. Adv. Model. Earth Syst., 10, 2564-2588, doi:10.1029/2018MS001390. URL
  26. Minamihara, Y., K. Sato, M. Tsutsumi, and T. Sato (2018),
    Statistical characteristics of gravity waves with near-inertial frequencies in the Antarctic troposphere and lower stratosphere observed by the PANSY radar,
    J. Geophys. Res. Atmos., 123, 8993-9010. doi:10.1029/2017JD028128. URL
  27. Yasui, R., K. Sato, and Y. Miyoshi (2018),
    The momentum budget in the stratosphere, mesosphere, and lower thermosphere Part 2: The in situ generation of gravity waves,
    J. Atmos. Sci., 75, 3635-3651. doi:10.1175/JAS-D-17-0337.1. URL
  28. Sato, K., R. Yasui, and Y. Miyoshi (2018),
    The momentum budget in the stratosphere, mesosphere, and lower thermosphere Part 1: Contribution of different wave types and in situ generation of Rossby waves,
    J. Atmos. Sci., 75, 3613-3633. doi:10.1175/JAS-D-17-0336.1. URL
  29. Amemiya, A., and K. Sato (2018),
    A two-dimensional dynamical model for the subseasonal variability of the Asian monsoon anticyclone,
    J. Atmos. Sci., 75, 3597–3612. doi:10.1175/JAS-D-17-0208.1. URL
  30. Nishiyama, T., K. Sato, T. Nakamura, M. Tsutsumi, T. Sato, Y.-M. Tanaka, K. Nishimura, Y. Tomikawa, M. Kohma (2018),
    Simultaneous observations of polar mesosphere winter echoes and cosmic noise absorptions in a common volume by the PANSY radar (69.0°S, 39.6°E),
    J. Geophys. Res. Space Phys., 123, 5019–5032. doi:10.1029/2017JA024717. URL
  31. Hayashi, Y., and K. Sato (2018),
    Formation of two-dimensional circulation in response to unsteady wave forcing in the middle atmosphere,
    J. Atmos. Sci., 75, 125-142. doi:10.1175/JAS-D-16-0374.1. URL
  32. Williams, P. D., M. J. Alexander, E. A. Barnes, A. H. Butler, H. C. Davies, C. I. Garfinkel, Y. Kushnir, T. P. Lane, J. K. Lundquist, O. Martius, R. N. Maue, W. R. Peltier, K. Sato, A. A. Scaife, C. Zhan (2017),
    A Census of Atmospheric Variability from Seconds to Decades,
    Geophys. Res. Lett., 44, 11,201-11,211. doi:10.1002/2017GL075483. URL
  33. Thurairajaha, B., K. Sato, J. Yue, T. Nakamura, M. Kohma, S. M. Bailey, J. M. Russell III (2017),
    Simultaneous observation of gravity waves at PMC altitude from AIM/CIPS experiment and PANSY radar over Syowa (69°S, 39°E),
    J. Atmos. Solar-Terr. Phys. 164, 324-331. doi:10.1016/j.jastp.2017.10.006. URL
  34. Tsutsumi, M., K. Sato, T. Sato, M. Kohma, T. Nakamura, K. Nishimura and Y. Tomikawa (2017),
    Characteristics of mesosphere echoes over Antarctica obtained using PANSY and MF radars,
    SOLA, 13A, 19-23. doi:10.2151/sola.13A-004. URL
  35. Shibuya R., K. Sato, M. Tsutsumi, T. Sato, Y. Tomikawa, K. Nishimura, and M. Kohma (2017),
    Quasi-12h inertia-gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6E, 69.0S),
    Atmos. Chem. Phys., 17, 6455-6476. doi:10.5194/acp-2016-813. URL
  36. Hashimoto, T., K. Nishimura, M. Tsutsumi, K. Sato and T. Sato (2017),
    A user parameter-free diagonal-loading scheme for clutter rejection on radar wind profilers,
    J. Atmos. Oceanic Technol., 34, 1139-1153. doi:10.1175/JTECH-D-16-0058.1. URL
  37. Sato, K., M. Kohma, M. Tsutsumi, and T. Sato (2017),
    Frequency spectra and vertical profiles of wind fluctuations in the summer Antarctic mesosphere revealed by MST radar observations,
    J. Geophys. Res. Atmos., 122, 3-19. doi:10.1002/2016JD025834. URL
  38. Hirano, S., M. Kohma, and K. Sato (2016),
    A three-dimensional analysis on the role of atmospheric waves in the climatology and interannual variability of stratospheric final warming in the Southern Hemisphere,
    J. Geophys. Res. Atmos., 121, 8429-8443. doi:10.1002/2015JD024481. URL
  39. Kinoshita, T., K. Sato, and T. Iwasaki (2016),
    A formulation of three dimensional wave activity flux describing wave propagation on the mass-weighted isentropic time mean equation,
    SOLA, 12, 198-202. doi:10.2151/sola.2016-040. URL
  40. Shibuya, R., K. Sato, and H. Miura (2016),
    A grid transformation method for a quasi-uniform, circular fine region using the spring dynamic,
    J. Meteor. Soc. Japan, 94, 443-452. doi:10.2151/jmsj.2016-022. URL
  41. Tsuchiya, C., K. Sato, M. J. Alexander, and L. Hoffmann (2016),
    MJO-related intraseasonal variation of gravity waves in the southern hemisphere tropical stratosphere revealed by high-resolution AIRS observations,
    J. Geophys. Res. Atmos., 121, 7641-7651. doi:10.1002/2015JD024463. URL (Preprint).
  42. Sato, K., C. Tsuchiya, M. J. Alexander, and L. Hoffmann (2016),
    Climatology and ENSO - related interannual varia bility of gravity waves in the southern hemisphere subtropical stratosphere revealed by high-resolution AIRS observations,
    J. Geophys. Res. Atmos., 121, 7622-7640. doi:10.1002/2015JD024462. URL (Preprint).
  43. Minamihara, Y., K. Sato, M. Kohma, and M. Tsutsumi (2016),
    Characteristics of vertical wind fluctuations in the lower troposphere at Syowa Station in the Antarctic revealed by the PANSY radar,
    SOLA, 12, 116-120. http://doi.org/10.2151/sola.2016-026. URL
  44. Amemiya, A., and K. Sato (2016),
    A new gravity wave parameterization including three dimensional propagation,
    J. Meteor. Soc. Japan, 94, 237-256. doi:10.2151/jmsj.2016-013. URL
  45. Mihalikova, M., K. Sato, M. Tsutsumi, T. Sato (2016)
    Properties of inertia-gravity waves in the lowermost stratosphere as observed by the PANSY radar over Syowa Station in the Antarctic,
    Ann. Geophys., 34, 543-555, doi:10.5194/angeo-34-543-2016. URL
  46. Yasui, R., K. Sato, and M. Tsutsumi (2016),
    Seasonal and interannual variation of mesospheric gravity waves based on MF radar observations over 15 years at Syowa Station in the Antarctic,
    SOLA,12, 46-50. http://doi.org/10.2151/sola.2016-010. URL
  47. Alexander, S. P., K. Sato, S. Watanabe, Y. Kawatani, D. J. Murphy (2016),
    Southern Hemisphere extra-tropical gravity wave sources and intermittency revealed by a middle atmosphere General Circulation Model,
    J. Atmos. Sci., 73, 1335-1349.DOI: http://dx.doi.org/10.1175/JAS-D-15-0149.1. URL (Preprint)
  48. Tomikawa, Y., K. Sato, N. Hirasawa, M. Tsutsumi, and T. Nakamura (2015),
    Balloon-borne observations of lower stratospheric water vapor at Syowa Station, Antarctica in 2013,
    Polar Sci., 9, 345-353, http://dx.doi.org/10.1016/j.polar.2015.08.003. URL
  49. Watanabe, S., K. Sato, Y, Kawatani, and M. Takahashi (2015),
    Vertical resolution dependence of gravity wave momentum flux simulated by an atmospheric general circulation model,
    Geosci. Model Dev., 8, 1637-1644, doi:10.5194/gmd-8-1637-2015. URL
  50. Sato, K., and M. Nomoto (2015),
    Gravity wave-induced anomalous potential vorticity gradient generating planetary waves in the winter mesosphere,
    J. Atmos. Sci., 72, 3609-3624. doi:http://dx.doi.org/10.1175/JAS-D-15-0046.1 URL (Preprint)
  51. Shibuya, R., K. Sato, Y. Tomikawa, M. Tsutsumi, and T. Sato (2015),
    A Study of Multiple Tropopause Structures Caused by Inertia-Gravity Waves in the Antarctic,
    J. Atmos. Sci., 72, 2109-2130. doi: http://dx.doi.org/10.1175/JAS-D-14-0228.1. URL
  52. Tomikawa, Y., M Nomoto, H. Miura, M. Tsutsumi, K. Nishimura, T. Nakamura, H. Yamagishi, T. Yamanouchi, T. Sato, and K. Sato (2015),
    Vertical Wind Disturbances during a Strong Wind Event Observed by the PANSY Radar at Syowa Station, Antarctica,
    Mon. Wea. Rev., 143, 1804-1821, doi: http://dx.doi.org/10.1175/MWR-D-14-00289.1. URL
  53. Nishiyama, T., K. Sato, T. Nakamura, M. Tsutsumi, T. Sato, M. Kohma, K. Nishimura, Y. Tomikawa, M. K. Ejiri, and T. T. Tsuda (2015),
    Height and time characteristics of seasonal and diurnal variations in PMWE based on 1 year observations by the PANSY radar (69.0°S, 39.6°E),
    Geophys. Res. Lett., 42, 2100-2108. doi: 10.1002/2015GL063349. URL
  54. Yasuda, Y., K. Sato, and N. Sugimoto (2015),
    A Theoretical Study on the Spontaneous Radiation of Inertia-Gravity Waves Using the Renormalization Group Method. Part I: Derivation of the Renormalization Group Equations,
    J. Atmos. Sci., 72, 957-983. doi: http://dx.doi.org/10.1175/JAS-D-13-0370.1. URL
  55. Yasuda, Y., K. Sato, and N. Sugimoto (2015),
    A Theoretical Study on the Spontaneous Radiation of Inertia-Gravity Waves Using the Renormalization Group Method. Part II: Verification of the Theoretical Equations by Numerical Simulation,
    J. Atmos. Sci., 72, 984-1009. doi: http://dx.doi.org/10.1175/JAS-D-13-0371.1. URL
  56. Sakazaki, T., K. Sato, Y. Kawatani, and S. Watanabe (2015),
    Three-dimensional structures of tropical nonmigrating tides in a high-vertical-resolution general circulation model,
    J. Geophys. Res. Atmos., 120, 1759-1775, doi: 10.1002/2014JD022464. URL (Yamamoto Award)
  57. Kohma, M., and K. Sato (2014),
    Variability of upper tropospheric clouds in the polar region during stratospheric sudden warmings,
    J. Geophys. Res. Atmos., 119, 10,100-10,113, doi:10.1002/2014JD021746. URL (Yamamoto Award)
  58. Kinoshita, T., and K. Sato (2014),
    A formulation of three-dimensional residual mean flow and wave activity flux applicable to equatorial waves,
    J. Atmos. Sci., 71, 3427-3438. doi: http://dx.doi.org/10.1175/JAS-D-13-0161.1. URL (Preprint)
  59. Shibuya, R., K. Sato, and M. Nakanishi (2014),
    Diurnal wind cycles forcing inertial oscillations: A latitude-dependent resonance phenomenon,
    J. Atmos. Sci., 71, 767–781, doi: http://dx.doi.org/10.1175/JAS-D-13-0124.1. URL (Preprint)
  60. Sato, K., M. Tsutsumi, T. Sato, T. Nakamura, A. Saito, Y. Tomikawa, K. Nishimura, M. Kohma, H. Yamagishi and T. Yamanouchi,
    Program of the Antarctic Syowa MST/IS Radar (PANSY) (2014),
    J. Atmos. Solar-Terr. Phys., 118, PartA, 2-15, doi:10.1016/j.jastp.2013.08.022. URL, PDF
  61. Sato, K., T. Kinoshita, and K. Okamoto (2013),
    A new method to estimate three-dimensional residual mean circulation in the middle atmosphere and its application to gravity-wave resolving general circulation model data,
    J. Atmos. Sci., 70, 3756–3779. doi: http://dx.doi.org/10.1175/JAS-D-12-0352.1. URL (Preprint)
  62. Geller, M. A., M. J. Alexander, P. T. Love, J. Bacmeister, M. Ern, A. Hertzog, E. Manzini. P. Preusse, K. Sato, A. A. Scaife and T. Zhou (2013),
    A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models,
    J. Climate, 26, 6383-6405, doi:10.1175/JCLI-D-12-00545.1. URL
  63. Kinoshita, T., and K. Sato (2013),
    A formulation of unified three-dimensional wave activity flux of inertia-gravity waves and Rossby waves,
    J. Atmos. Sci., 70, 1603-1615, doi:10.1175/JAS-D-12-0138.1. URL (Yamamoto Award)
  64. Kinoshita, T., and K. Sato (2013),
    A formulation of three-dimensional residual mean flow applicable both to inertia-gravity waves and to Rossby waves,
    J. Atmos. Sci., 70, 1577-1602, doi:10.1175/JAS-D-12-0137.1. URL (Yamamoto Award)
  65. Kohma, M., and K. Sato (2013),
    Kelvin and Rossby waves trapped at boundaries under the full Coriolis force,
    SOLA, 9, 9-14, doi:10.2151/sola.2013-003. URL
  66. Yasuda, Y., and K. Sato (2013),
    The effect of the horizontal component of the angular velocity of the Earth's rotation on inertia-gravity waves,
    J. Meteor. Soc. Japan, 91, 23-41, DOI:10.2151/jmsj.2013-102. URL
  67. Kohma, M., and K. Sato (2013),
    Simultaneous occurrence of polar stratospheric clouds and upper-tropospheric clouds caused by blocking anticyclones in the Southern Hemisphere,
    Atmos. Chem. Phys., 13, 3849-3864, doi:10.5194/acp-13-3849-2013. URL (Yamamoto Award)
  68. Nishimura, K., T. Nakamura, T. Sato and K. Sato (2012),
    Adaptive Beamforming Technique for Accurate Vertical Wind Measurements with Mult-channel MST Radar,
    J. Atmos. Oceanic Technol., 29, 1769–1775, doi:10.1175/JTECH-D-11-00211.1. URL
  69. Tomikawa, Y., K. Sato, S. Watanabe, Y. Kawatani, K. Miyazaki, and M. Takahashi (2012),
    Growth of planetary waves and the formation of an elevated stratopause after a major stratospheric sudden warming in a T213L256 GCM,
    J. Geophys. Res.,117, D16101, doi:10.1029/2011JD017243. URL
  70. Sato, K., S. Tateno S. Watanabe, and Y. Kawatani (2012),
    Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model,
    J. Atmos. Sci., 69, 1378–1396, doi:10.1175/JAS-D-11-0101.1. URL
  71. Kohma, M., and K. Sato (2011),
    The effects of atmospheric waves on the amounts of polar stratospheric clouds,
    Atmos. Chem. Phys., 11, 11535-11552, doi:10.5194/acp-11-11535-2011. URL
  72. Tsuchiya, C., K. Sato, T. Nasuno, A. T. Noda, and M. Satoh (2011),
    Universal Frequency Spectra of Surface Meteorological Fluctuations,
    J. Climate, 24, 4718–4732, doi:10.1175/2011JCLI4196.1. URL
  73. Okamoto, K., K. Sato, and H. Akiyoshi (2011),
    A study on the formation and trend of the Brewer-Dobson circulation,
    J. Geophys. Res., 116, D10117, doi:10.1029/2010JD014953. URL, PDF
  74. Alexander, M. J., M. Geller, C. McLandress, S. Polavarapu, P. Preusse, F. Sassi, K. Sato, S. Eckermann, M. Ern, A. Hertzog, Y. Kawatani, M. Pulido, T. Shaw, M. Sigmond, R. Vincent, S. Watanabe (2010),
    Recent developments in gravity wave effects in climate models, and the global distribution of gravity wave momentum flux from observations and models,
    Q. J. Roy. Meteorol. Soc., 136, 1103-1124, DOI: 10.1002/qj.637. URL
  75. Kinoshita, K., Y. Tomikawa and K. Sato (2010),
    On the three-dimensional residual mean circulation and wave activity flux of the primitive equations,
    J. Meteor. Soc. Japan, 88, 3, 373-394, URL, DOI:10.2151/jmsj.2010-307. URL (JMSJ Award)
  76. Tomikawa, Y., and K. Sato (2010),
    Ozone enhanced layers in the 2003 Antarctic ozone hole,
    J. Meteor. Soc. Japan, 88, 1, 1-14, doi:10.2151/jmsj.2010-101. URL, PDF
  77. Miyazaki, K., S. Watanabe, Y. Kawatani, Y. Tomikawa, M. Takahashi, and K. Sato (2010),
    Transport and mixing in the extratropical tropopause region in a high vertical resolution GCM. Part I: Potential vorticity and heat budget analysis,
    J. Atmos. Sci., 67, 1293–1314. URL, PDF (Yamamoto-Syono Award)
  78. Miyazaki, K., K. Sato, S. Watanabe, Y. Tomikawa, Y. Kawatani, and M. Takahashi (2010),
    Transport and mixing in the extratropical tropopause region in a high vertical resolution GCM. Part II: Relative importance of large-scale and small-scale dynamics,
    J. Atmos. Sci., 67, 1315–1336. URL, PDF (Yamamoto-Syono Award)
  79. Kawatani, Y., K. Sato, T. J. Dunkerton, S. Watanabe, S. Miyahara, and M. Takahashi (2010),
    The roles of equatorial trapped waves and internal inertia-gravity waves in driving the quasi-biennial oscillation. Part I: zonal mean wave forcing,
    J. Atmos. Sci., 67, 963-980, DOI:10.1175/2009JAS3222.1. URL, PDF (Yamamoto-Syono Award)
  80. Kawatani, Y., K. Sato, T. J. Dunkerton, S. Watanabe, S. Miyahara, and M. Takahashi (2010),
    The roles of equatorial trapped waves and internal inertia-gravity waves in driving the quasi-biennial oscillation. Part II: Three-dimensional distribution of wave forcing,
    J. Atmos. Sci., 67, 981-997, DOI:10.1175/2009JAS3223.1. URL, PDF (Yamamoto-Syono Award)
  81. Sato, K., S. Watanabe, Y. Kawatani, Y. Tomikawa, K. Miyazaki, and M. Takahashi (2009),
    On the origins of mesospheric gravity waves,
    Geophys. Res. Lett., 36, L19801, doi:10.1029/2009GL039908. URL, PDF
  82. Watanabe, S., Y. Tomikawa, K. Sato, Y. Kawatani, K. Miyazaki, and M. Takahashi (2009),
    Simulation of the eastward 4-day wave in the Antarctic winter mesosphere using a gravity wave resolving general circulation model,
    J. Geophys. Res., 114, D16111, doi:10.1029/2008JD011636. URL, PDF
  83. Murata, I., K. Sato, S. Okano, and Y. Tomikawa (2009),
    Measurements of stratospheric ozone with a balloon-borne optical ozone sensor,
    Int. J. Remote Sens., 30, Nos. 15-16, 3961-3966, doi:10.1080/01431160902822823. URL
  84. Kurihara, J., T. Abe, I. Murata, K. Sato, and Y. Tomikawa (2009),
    Development of quartz friction gauge on board balloon and sounding rocket,
    Trans. JSASS Space Tech. Japan, 7, Pm_7-Pm_11, doi:10.2322/tstj.7.Pm_7. URL
  85. Sato, K., Y. Tomikawa, G. Hashida, T. Yamanouchi, H. Nakajima and T. Sugita (2009),
    Longitudinally Dependent Ozone Increase in the Antarctic Polar Vortex Revealed by Balloon and Satellite Observations,
    J. Atmos. Sci., 66, 6, 1807-1820. URL, PDF
  86. Kawatani, Y., M. Takahashi, K. Sato, S. P. Alexander, and T. Tsuda (2009),
    Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: AGCM simulation of sources and propagation,
    J. Geophys. Res., 114, D01102, doi:10.1029/2008JD010374. URL, PDF
  87. Tomikawa, Y., K. Sato, S. Watanabe, Y. Kawatani, K. Miyazaki, and M. Takahashi (2008),
    Wintertime temperature maximum at the subtropical stratopause in a T213L256 GCM,
    J. Geophys. Res., 113, D17117, doi:10.1029/2008JD009786. URL, PDF
  88. Watanabe, S.,Y. Kawatani, Y. Tomikawa, K. Miyazaki, M. Takahashi, and K. Sato (2008),
    General Aspects of a T213L256 Middle Atmosphere General Circulation Model,
    J. Geophys. Res., 113, D12110, doi:10.1029/2008JD010026. (highlighted). URL, PDF
  89. Tateno S., and K. Sato (2008),
    A study of inertia-gravity waves in the middle stratosphere based on intensive radiosonde observations,
    J. Meteor. Soc. Japan, 86, 5, 719-732. URL, PDF
  90. Sato K., and M. Yoshiki (2008),
    Gravity wave generation around the polar vortex in the stratosphere revealed by 3-hourly radiosonde observations at Syowa Station,
    J. Atmos. Sci., 65, 3719-3735, doi:10.1175/2008JAS2539.1. URL, PDF
  91. Luce, H., G. Hassenpflug, M. Yamamoto, S. Fukao, and K. Sato (2008),
    High-Resolution Observations with MU Radar of a KH Instability Triggered by an Inertia-Gravity Wave in the Upper Part of a Jet Stream,
    J. Atmos. Sci., 65, 1711-1718. doi: 10.1175/2007JAS2346.1. URL, PDF
  92. Sato, K., and N. Hirasawa (2007),
    Statistics of Antarctic surface meteorology based on hourly data in 1957-2007 at Syowa Station,
    Polar Sci., 1, 1-15. URL, PDF
  93. Ogino, S., K. Sato, M. D. Yamanaka and A. Watanabe (2006),
    Lower-stratospheric and upper-tropospheric disturbances observed by radiosondes over Thailand during January 2000,
    J. Atmos. Sci., 63, 3437-3447, doi:10.1175/JAS3801.1. URL, PDF
  94. Tomikawa, Y., K. Sato and T. G. Shepherd (2006),
    A diagnostic study of waves on the tropopause,
    J. Atmos. Sci., 63, 3315-3332, doi:10.1175/JAS3800.1. URL, PDF
  95. Tomikawa, Y., M. Yoshiki and K. Sato (2006),
    A neutral wave observed in the Antarctic polar vortex,
    J. Meteor. Soc. Japan, 84, 97-113. URL, PDF
  96. Watanabe, S., K. Sato, and M. Takahashi (2006),
    A general circulation model study of the orographic gravity waves over Antarctica excited by katabatic winds,
    J. Geophys. Res., 111, D18104, doi:10.1029/2005JD006851. URL, PDF
  97. Yamamori, M., and K. Sato (2006),
    Characteristics of inertia gravity waves over the South Pacific as revealed by radiosonde observations,
    J. Geophys. Res., 111, D16110, doi:10.1029/2005JD006861. URL, PDF
  98. Sugita, T., H. Nakajima, T. Yokota, H. Kanzawa, H. Gernandt, A. Herber, P. von der Gathen, G. Konig-Langlo, K. Sato, V. Dorokhov, V. Yushkov, Y. Murayama, M. Yamamori, S. Godin-Beekmann, F. Goutail, H. Roscoe, T. Deshler, M. Yela, P. Taalas, E. Kyro, S. Oltmans, B. Johnson, M. Allaart, Z. Litynska, A. Klekociuk, S. B. Andersen, G. Braathen, H. D. Backer, C. Randall, R. Bevilacqua, G. Taha, L. Thomason, H. Irie, M. Ejiri, N. Saitoh, T. Tanaka, Y. Terao, H. Kobayashi, and Y. Sasano (2006),
    Ozone profiles in the high-latitude stratosphere and lower mesosphere measured by the Improved Limb Atmospheric Spectrometer (ILAS)-II: Comparison with other satellite sensors and ozonesondes
    J. Geophys. Res., 111, D11S02,doi:10.1029/2005JD006439. URL
  99. Gavrilov, N. M., S. Fukao, H. Hashiguchi, K. Kita, K. Sato, Y. Tomikawa, and M. Fujiwara (2006),
    Combined MU radar and ozonesonde measurements of turbulence and ozone fluxes in the tropo-stratosphere over Shigaraki, Japan,
    Geophys. Res. Lett., 33, L09803, doi:10.1029/2005GL024002. URL
  100. Tomikawa, Y., and K. Sato (2005),
    Design of the NIPR trajectory model
    Polar Meteorology and Glaciology, 19, 120-137. URL
  101. Yamanouchi,T., R. Treffeisen, A. Herber, M. Shiobara, S. Yamagata, K..Hara, K.. Sato, M. Yabuki, Y. Tomikawa, A. Rinke, R. Neuber, R. Schumachter, M. Kriews, J. Strom, O. Schrems, H. Gernandt (2005),
    Arctic Study of Tropospheric Aerosol and Radiation (ASTAR) 2000: Arctic haze case study,
    Tellus, 57B, 141-152. URL
  102. Yoshiki, M., N. Kizu, and K. Sato (2004),
    Energy enhancements of gravity waves in the Antarctic lower stratosphere associated with variations in the polar vortex and tropospheric disturbances,
    J. Geophys. Res., 109(D23), D23104, doi: 10.1029/2004JD004870. URL, PDF
  103. Sato, K., M. Yamamori, S. Ogino, N. Takahashi, Y. Tomikawa, and T. Yamanouchi (2003),
    A Meridional Scan of the Stratospheric Gravity Wave Field over the Ocean in 2001 (MeSSO2001),
    J. Geophys. Res., 108(D16), 4491, doi:10.1029/2002JD003219. URL, PDF
  104. Tomikawa, Y., and K. Sato (2003),
    Trapped waves in the edge region of stratospheric polar vortices,
    J. Geophys. Res., 108(D2), 4047, doi:1029/2002JD002579. URL
  105. Thomason, L.W., A. B. Herber, T. Yamanouchi and K. Sato (2003),
    Arctic Study on Tropospheric Aerosol and Radiation: Comparison of tropospheric aerosol extinction profiles measured by airborne photometer and SAGE II,
    Geophys. Res. Lett., 30(6), 1328, doi:10.1029/2002GL016453. URL
  106. Shibata, T., K. Sato, H. Kobayashi, M. Yabuki, and M. Shiobara (2003),
    Antarctic polar stratospheric clouds under temperature perturbation by nonorographic inertia gravity waves observed by micropulse lidar at Syowa Station,
    J. Geophys. Res., 108(D3), 4105, doi:10.1029/2002JD002713. URL, PDF
  107. Hara, , K., S. Yamagata, T. Yamanouchi, K. Sato, A. Herber, Y. Iwasaka, M. Nagatani and A. Nakada (2003),
    Mixing states of individual aerosol particles in spring Arctic Troposphere during ASTAR 2000 campaign,
    J. Geophys. Res., 108(D7), 4209, doi:10.1029/2002JD002513. URL
  108. Tomikawa, Y., K. Sato, K. Kita, M. Fujiwara, M. Yamamori, and T. Sano (2002),
    Formation of an ozone lamina due to differential advection revealed by intensive observations,
    J. Geophys. Res., 107(D10), 10.1029/2001JD000386. URL
  109. Sato, K., and T. J. Dunkerton (2002),
    Layered structure associated with low potential vorticity near the tropopause seen in high resolution radiosondes over Japan,
    J. Atmos. Sci., 59, No. 19, 2782-2800. URL, PDF
  110. Yamamori, M., and K. Sato (2002),
    Amplification mechanism of medium-scale tropopausal waves,
    Mon. Wea. Rev., 130, 1455-1467. URL
  111. Baldwin, M. P., L.J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi (2001),
    The Quasi-Biennial Oscillation
    Rev. of Geophys., 39, 179-229. URL
  112. Yoshiki, M., and K. Sato (2000),
    A statistical study of gravity waves in the polar regions based on operational radiosonde data,
    J. Geophys. Res. 105, 17995-18011. URL, PDF
  113. Sato, K., K. Yamada, and I. Hirota (2000),
    Global characteristics of medium-scale tropopausal waves observed in ECMWF operational data,
    Mon. Wea. Rev., 128, No.11, 3808-3823. URL
  114. Sato, K. (2000),
    Sources of gravity waves in the polar middle atmosphere,
    Adv. Polar Upper Atmos. Res., 14, 233-240. URL, PDF
  115. Sato, K., T. Kumakura, and M. Takahashi (1999),
    Gravity waves appearing in a high-resolution GCM simulation,
    J. Atmos. Sci. ,56, No.8, 1005-1018. URL, PDF
  116. Satomura T., and K. Sato (1999),
    Secondary generation of gravity waves associated with the breaking of mountain waves,
    J. Atmos. Sci., 56, No.22, 3847-3858. URL
  117. Wada, K., T. Nitta, and K. Sato (1999),
    Equatorial inertia-gravity waves in the lower stratosphere revealed by TOGA-COARE IOP data,
    J. Meteor. Soc. Japan, 77, 721-736. URL
  118. Yamamori, M., and K. Sato (1998),
    A quasi-geostrophic analysis on medium-scale waves near the midlatitude tropopause and their relation to the background state,
    J. Meteor. Soc. Japan, 76, 879-888. URL
  119. Sato, K., D. J. O'Sullivan and T. J. Dunkerton (1997),
    Low-frequency inertia-gravity waves in the stratosphere revealed by three-week continuous observation with the MU radar,
    Geophys. Res. Lett., 24, 1739-1742. URL
  120. Yamamori, M., K. Sato, and I. Hirota (1997),
    A study on seasonal variation of upper tropospheric medium-scale waves over East Asia based on regional climate model data,
    J. Meteor. Soc. Japan, 75, 13-22. URL
  121. Sato, K. (1997),
    Observational studies of gravity waves associated with convection,
    Gravity Wave Processes: Their Parameterization in Global Climate Models, edited by K. Hamilton, NATO ASI Series, I-50, 63-68, Springer.
  122. Sato, K., and T. J. Dunkerton (1997),
    Estimates of momentum flux associated with equatorial Kelvin and gravity waves,
    J. Geophys. Res., 102, 26,247-26,261. URL, PDF
  123. Hirota, I., K. Yamada, and K. Sato (1995),
    Medium-scale travelling waves over the north Atlantic,
    J. Meteor. Soc. Japan, 73, 1175-1179. URL
  124. Sato, K., H. Hashiguchi, and S. Fukao (1995),
    Gravity waves and turbulence associated with cumulus convection observed with the UHF/VHF clear-air Doppler radars,
    J. Geophys. Res., 100, 7111-7119. URL, PDF
  125. Sato, K., F. Hasegawa, and I. Hirota (1994),
    Short-period disturbances in the equatorial lower stratosphere,
    J. Meteor. Soc. Japan, 72, 859-872. URL, PDF
  126. Sato, K., and M. Yamada (1994),
    Vertical structure of atmospheric gravity waves revealed by the wavelet analysis,
    J. Geophys. Res., 99, 20,623-20,631. URL
  127. Sato, K. (1994),
    A statistical study of the structure, saturation and sources of inertio-gravity waves in the lower stratosphere observed with the MU radar,
    J. Atmos. Terr. Phys., 56, 755-774. URL, PDF
  128. Sato, K., H. Eito, and I. Hirota (1993),
    Medium-scale traveling waves in the extratropical upper troposphere,
    J. Meteor. Soc. Japan, 71, 427-436. URL
  129. Sato, K. (1993),
    Small-scale wind disturbances observed by the MU radar during the passage of Typhoon Kelly,
    J. Atmos. Sci., 50, 518-537. URL, PDF
  130. Sato, K. (1992),
    Vertical wind disturbances in the afternoon of mid-summer revealed by the MU radar,
    Geophys. Res. Lett., 19, 1943-1946. URL
  131. Sato, K. (1990),
    Vertical wind disturbances in the troposphere and lower stratosphere observed by the MU radar,
    J. Atmos. Sci., 47, 2803-2817. URL, PDF (Yamamoto-Syono Award)
  132. Emura, K., K. Sato, S. Yamazaki, S. Murata, M. Shikada and K. Minemura (1990),
    Optimum system design for CPFSK heterodyne delay demodulation system with DFB LD's,
    J. Lightwave Technol., LT-8, 251-258. URL
  133. Sato, K. (1989)
    An inertial gravity wave associated with a synoptic-scale pressure trough observed by the MU radar,
    J. Meteor. Soc. Japan, 67, 325-334. URL
  134. Sato, K., and I. Hirota (1988)
    A small-scale internal gravity waves in the lower stratosphere revealed by the MU radar multi-beam observation,
    J. Meteor. Soc. Japan, 66, 987-999. URL
  135. (in Japanese) 佐藤薫 (2019),
    南極昭和基地大型大気レーダー計画(PANSY)と高解像中層大気力学研究―2018年度藤原賞受賞記念講演―
    天気, 62, 5-15.
  136. (in Japanese) 佐藤薫, 高薮縁, 早坂忠裕 (2017),
    日本学術会議提言「我が国の地球衛星観測のあり方について」
    天気,64, 747-751.
  137. (in Japanese) 佐藤薫, 堤雅基, 佐藤亨, 中村卓司, 齊藤昭則, 冨川喜弘, 西村耕司, 山岸久雄, 山内恭 (2013),
    2011年度春季大会シンポジウム「変動する地球気候の鍵―南極・北極―」
    1. 新しい南極昭和基地大型大気レーダー(PANSY)から見えるもの
    天気,60, 883–888.
  138. (in Japanese) 栗原純一, 村田功, 佐藤薫, 冨川喜弘, 阿部琢美 (2009),
    気球搭載用水晶摩擦気圧計の開発とBU30-5号機による性能実証試験
    宇宙航空研究開発機構研究開発報告, JAXA-RR-08-001, 43-56.
  139. (in Japanese) 村田功, 佐藤薫, 山上隆正, 岡野章一, 冨川喜弘 (2009),
    GPS搭載型工学オゾンゾンデの開発
    宇宙航空研究開発機構研究開発報告, JAXA-RR-08-001, 57-62.
  140. (in Japanese) 吉識宗佳, 木津暢彦, 佐藤薫 (2006),
    昭和基地連結飛揚観測に基づくラジオゾンデデータ品質比較
    天気, 53, 123-133.
    Yoshiki, M., N. Kizu, and K. Sato (2006),
    A comparison of Vaisala RS80-15GH and Meisei RS2-91 radiosonde data based on simultaneous observations at Syowa Station
    Tenki, 53, 123-133.
  141. (in Japanese) 佐藤薫 (2004),
    南極昭和基地の気象
    天気, 51, 869-879.
  142. (in Japanese) 佐藤薫、堤雅基、麻生武彦、佐藤亨、山内恭、江尻全機 (2003),
    日本気象学会 2002年度春季大会シンポジウム「21世紀の極域科学―今なぜ南極観測なのか―」
    7. これからの南極観測―南極昭和基地大型大気レーダー計画―
    天気, 50, 619-624.
  143. (in Japanese) 佐藤薫 (1999)
    中層大気重力波の研究
    - 平成10年度気象学会学会賞受賞記念講演 -
    天気, 46, 803-818.
  144. (in Japanese) 佐藤薫 (1999),
    赤道下部成層圏準2年周期振動における大気重力波の役割
    天気, 46, 11-19.
  145. (in Japanese) 佐藤薫 (1997),
    日本気象学会1996年度秋季大会シンポジウム
    ---「航空機で観る大気--航空機で何が分かるか」---
    1. 大気運動の観測 - 大気波動の研究と航空機観測 -
    天気, 44, 687-694.
  146. (in Japanese) 佐藤亨, 佐藤薫, 賀谷信幸, 松本紘 (with English abstract) (1993),
    MU レーダーによる下部成層圏風速の観測
    - 成層圏無線中継システムのための環境評価 -
    Monitoring of winds in the lower stratosphere with the MU radar
    -Environmental Assessment for the stratospheric radio link system-
    日本航空宇宙学会誌,41, 351-358. URL
  147. (in Japanese) 佐藤薫 (1992),
    MUレーダーで観測される対流圏及び下部成層圏の鉛直風擾乱
    - 平成3年度山本・正野論文賞受賞記念講演 -
    天気, 39, 337-346.

Books

  1. (in Japanese) 地学基礎 (共著) (文部科学省検定済教科書 高等学校理科用)
    磯崎行雄, 川勝均, 佐藤薫 他12名, 啓林館, 239pp, 2016
    (ISBN: 4402037514)
  2. (in Japanese) 地学 (共著) (文部科学省検定済教科書 高等学校理科用)
    磯崎行雄, 江里口良治 他10名, 啓林館, 415pp, 2014
    (ISBN: 4402045401)
  3. (in Japanese) 南極ってどんなところ? 朝日選書 (共著)
    柴田鉄治, 中山由美, 国立極地研究所 朝日新聞社, 224pp, 2005
    (ISBN: 4022598735)
  4. (in Japanese) 南極・北極の百科事典 (共著)
    国立極地研究所「南極・北極の百科事典」編集委員会 丸善,518pp, 2004
    (ISBN: 4621073958)
  5. (in Japanese) スペクトル解析ハンドブック (共著)
    日野幹雄 (編集) 朝倉書店, 621pp, 2004
    (ISBN: 4254201087)

Un-refereed Articles

  1. (in Japanese) 佐藤薫,
    南極昭和基地大型大気レーダープロジェクト
    極地, 100, 17–25, 2015. PDF
  2. (in Japanese) 佐藤薫,
    フロン使用を続けた地球をシミュレーション
    「地球46億年の旅」, 朝日新聞出版,07, 13,2013.
  3. Sato, K., M. Tsutsumi, T. Sato, T. Nakamura, A. Saito, Y. Tomikawa, K. Nishimura, H. Yamagishi, and T. Yamanouchi,
    Program of the Antarctic Syowa MST/IS Radar (PANSY),
    SPARC Newsletter, 36, 23-26, January, 2011. PDF
  4. Sato, K., M. Tsutsumi, T. Sato, T. Nakamura, A. Saito, Y. Tomikawa, K. Nishimura, H. Yamagishi, and T. Yamanouchi,
    MST/IS radar detected the first echo from the atmosphere in the Antarctic,
    CAWSES-II TG4 Newsletter, 5, 1-2, 2011. PDF
  5. (in Japanese) 佐藤薫,
    MUレーダーからPANSYへ
    「京大地球物理学研究の百年(II)」, 竹本修三, 廣田勇, 荒木徹編, 京大地球物理の歴史を記録する会, 55-59, 2010. PDF
  6. (in Japanese) 佐藤薫、廣岡俊彦,
    日本気象学会創立125周年記念解説:中層大気
    天気, 54, 399-402, 2007.
  7. (in Japanese) 佐藤薫,
    JARE44オゾンホール観測
    極地, 79, 26-34, 2004. PDF.
  8. (in Japanese) 佐藤薫,
    大気重力波の復権,
    パリティ, 13-12, 97-99, 1998.
  9. (in Japanese) 佐藤薫,
    大気重力波のデータ解析,
    AERA Mook New 学問のみかた 2「気象学のみかた。」,42-43, 1996.