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Abstract 

The tropical Indian Ocean climate variability is investigated using an artificial 

neural network analysis called Self-Organizing Map (SOM) for both observational data 

and coupled model outputs.  The SOM successfully captures the dipole sea surface 

temperature anomaly (SSTA) pattern associated with the Indian Ocean Dipole (IOD) 

and basin-wide warming/cooling associated with ENSO.  The dipole SSTA pattern 

appears only in boreal summer and fall, whereas the basin-wide warming/cooling 

appears mostly in boreal winter and spring owing to the phase-locking nature of these 

phenomena.  Their occurrence also undergoes significant decadal variation. 

Composite diagrams constructed for nodes in the SOM array based on the 

simulated SSTA reveal interesting features.  For the nodes with the basin-wide 

warming, a strong positive SSTA in the eastern equatorial Pacific, a negative Southern 

Oscillation, and a negative precipitation anomaly in East Africa are found.  The nodes 

with the positive IOD are associated with a weak positive SSTA in the central equatorial 

Pacific or positive SSTA in the eastern equatorial Pacific, a positive (negative) sea level 

pressure anomaly in the eastern (western) tropical Indian Ocean, and a positive 

precipitation anomaly over East Africa.  The warming in the central equatorial Pacific 

appears to correspond to El Niño Modoki discussed recently.  These results suggest 

usefulness of SOM in studying large-scale ocean-atmosphere coupled phenomena. 

 

Keywords: Indian Ocean Dipole, El Niño-Southern Oscillation, Self-Organizing Map, 

decadal variability, seasonal phase-locking 
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1. Introduction 

The tropical Indian Ocean undergoes significant interannual variations owing to 

large-scale air-sea interaction.  El Niño in the Pacific induces basin-wide warming in 

the tropical Indian Ocean (Klein et al. 1999), whereas the Indian Ocean Dipole (IOD; 

Saji et al. 1999, Webster et al. 1999), an intrinsic air-sea coupled mode of the tropical 

Indian Ocean, causes warm (cold) sea surface temperature anomaly (SSTA) to the 

west (east).  These variations in the tropical Indian Ocean not only cause modulations 

in the monsoons (Annamalai and Murtugudde 2004; Vecchi and Harrison 2004) and the 

East African short rains (Black et al. 2003; Behera et al. 2005), but also influence 

extra-tropical climate variability (Guan and Yamagata 2003; Saji and Yamagata 2003).  

Furthermore, the decadal variation in the IOD causes the decadal variation in the 

Southern Oscillation by influencing the sea level pressure in the Indo-Pacific domain 

(Behera and Yamagata 2003) and the relationship with the Indian Summer Monsoon 

Rainfall and the El Niño/Southern Oscillation (ENSO) as discussed by Ashok et al. 

(2001). This is why many studies have recently focused on the tropical Indian Ocean 

(see Yamagata et al. 2004 and Chang et al. 2006 for reviews). 

Above studies, however, relied on linear analyses such as composite analysis, 

correlation analysis, and various kinds of empirical orthogonal function (EOF).  Actually, 

the IOD’s existence and dependence on ENSO were discussed on the basis of linear 

statistics (Allan et al. 2001; Dommenget and Latif 2002; Behera et al. 2003).  Since the 

coupled air-sea phenomena are inherently nonlinear, it is interesting to investigate the 

variability using a non-linear analysis method.  One such method is the self-organizing 
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map (SOM) (Kohonen 2001), which is only recently introduced to the climate research 

community (e.g. Richardson et al. 2003; Cheng and Wilson 2006; Leloup et al. 2007a, 

b).  Although non-linear analyses have been applied to ENSO studies (e.g. Wu and 

Hsieh 2003; An et al. 2006), only Collins et al. (2004) have adopted a nonlinear 

canonical correlation analysis in the tropical Indian Ocean.  However, it was for an 

empirical model that assesses predictability of SST and SLP over the tropical Indian 

Ocean. 

We here investigate the tropical Indian Ocean climate variability using the SOM for 

the first time and examine its usefulness in climate research.  The present paper is 

organized as follows.  A brief description of the data and the SOM is given in the next 

section.  In section 3, the observed and simulated tropical Indian Ocean climate 

variability is analyzed using the SOM.  In particular, a detailed discussion on the 

seasonal phase-locking and decadal variations as well as difference in the atmospheric 

response to the SSTA is given there.  The final section summarizes the main results. 

 

2. Data and Method 

2.1 Data and model 

The SST data used in the present study is the HadISST.  It is monthly dataset of 

1° x 1° horizontal resolution from 1951 to 1999 and is edited by Rayner et al. (2003). 

The model data is from a coupled atmosphere-ocean-land general circulation 

model (GCM) run on the Earth Simulator of Japan Agency for Marine-Earth Science and 

Technology.  The model is called SINTEX-F1 model (Luo et al. 2003; Tozuka et al. 
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2005), which is an upgraded version of the SINTEX model (Gualdi et al. 2003).  The 

atmospheric component T106L19 ECHAM-4 (Roeckner et al. 1996) is coupled to the 

oceanic component OPA-8.2 (Madec et al. 1998) using the coupler OASIS 2.4 (Valcke 

et al. 2000).  No measures for flux adjustments are taken in the model.  The 

horizontal resolution of the ocean general circulation model (OGCM) is 2° x 2° with an 

increased meridional resolution up to 0.5° near the equator.  There are 31 levels in the 

vertical with 19 levels in the upper 400 m.  The monthly mean output from the last 200 

years of the total 220 years model integration is used for the analysis.  Details of the 

coupled general circulation model (CGCM) can be found in the above references and 

readers are referred to Behera et al. (2003) and Tozuka et al. (2007) for the model 

performance in the tropical Indian Ocean.  The long time-series of the model data also 

provides us with the necessary statistical confidence for composite analyses. 

 

2.2 Method: SOM 

The SOM is an unsupervised artificial neural network and shown to be an effective 

method for feature extraction and classification.  We here used a software package 

called SOM_PAK 3.1 (Kohonen et al. 1995), and readers are referred to Kohonen (1982, 

2001) for more details about the SOM and Leloup et al. (2007a, b) or Richardson et al. 

(2003) for its application in climate.  Here, we give a brief introduction to this method; 

Fig. 1 is the schematic diagram showing how to apply this method. 

 We have first prepared input data from both observed and simulated SSTA by 

calculating average SSTA in 10° (longitude) x 5° (latitude) boxes between 17.5°S and 
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17.5°N in the tropical Indian Ocean after removing a linear trend using a least-square fit.  

As a result, the input matrix consisted of 43 grid points and 588 (2400) months of data 

for observation (model) and 2988 months of data for a combined analysis.  Then, the 

dimension of the two-dimensional SOM array is decided to be 7 x 7 (total of 49 nodes) 

for the observation and 9 x 9 (total of 81 nodes) for the combined analysis.  Each node 

in the SOM array is associated with a reference vector with dimensions equal to that of 

the input vector, i.e. 43 in the present study.  The topology or lattice structure of the 

array can be either hexagonal or rectangular, and we have decided to use a rectangular 

map.  Results are not sensitive to this topology. 

We have initialized the reference vectors to random values that are evenly 

distributed in the area of corresponding data vector components.  Our qualitative 

results are not sensitive to the way of initialization.  At each step in the training process, 

a reference vector with the smallest Euclidean distance with the input vector is selected 

as the “winner” node: 

cn = argmin xn !mij   ,  

where cn  is an index of the “winner” on the SOM array, mij  is the reference vector, 

xn  denotes the present input vector, and the “arg” denotes index.  This “winner” node 

becomes the center of an update neighborhood, within which reference vectors are 

restored to the input vector.  The “winner” and neighborhood nodes are updated using 

the following recurrence formula: 

mij n +1( ) = mij n( ) +! n( ) "hcij n( ) " x n( ) #mij n( )$% &'   .  
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Here, ! n( )  is the learning rate, or the rate at which nodes converge to the input vector 

and decreases linearly between the initial and final step of the training.  There are two 

types of neighborhood function, hcij , available in the software; we have decided to use 

a “bubble” function: 

hcij n( ) = F ! n( ) " dcij( )   ,  

where F  is a step function:  

F y( ) = 0     if  y < 0
1     if  y ! 0

"
#
$

  .  

Here, dcij  is the Euclidean distance between a node and the “winner” node, and ! (n)  

is the neighborhood radius that also linearly decreases between the initial and final step.  

Any node located within this radius is updated.  Note that we have chosen the “bubble” 

function as it gives better results compared with the “Gaussian” function (Liu et al. 2006).  

The winning node becomes similar to the input vector and surrounding nodes develop 

representations of similar, but not the same, patterns.  The above procedure is iterated 

during the training process. 

The above training is undertaken in two phases.  During the first phase, we use a 

larger initial learning rate !o  and a neighborhood radius ! o  so that the reference 

vectors of the SOM array are ordered.  Then, we used a smaller rate !o  and radius 

! o  to tune the values of reference vectors in the second phase.  The training time is 

significantly longer in the second phase.  After these two training phases, the SOM 

array consists of a number of patterns characteristic of the input data, with similar 

patterns nearby and dissimilar patterns further apart as shown in Fig. 2. 
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We tried many different sets of values for the learning rate, neighborhood radius, 

and training time to make a resulting quantization error to be small.  Also, after testing 

several dimensions from 7 x 7 to 15 x 15, we have found that 7 x 7 (9 x 9) map is 

sufficient to describe the observed (simulated) SST variability in the tropical Indian 

Ocean. 

 

3. Results 

3.1 Observational data analysis 

The SOM array thus obtained from the observational data is shown in Fig. 2.  

Each node in Fig. 2 represents a SSTA pattern in the tropical Indian Ocean.  The 

SSTA patterns with a basin-wide warming (cooling) are mostly located in the lower right 

(upper left) corner, while those with a positive (negative) SSTA to the west and a 

negative (positive) SSTA to the east are seen in the lower left (upper right) corner.  The 

latter is known as the IOD (Saji et al. 1999).  Neutral conditions with only small SSTA 

are distributed in the central part. 

To obtain more insight into the SSTA patterns in Fig. 2, we have constructed a 

composite diagram of global SSTA for each node (Fig. 3).  It is found that all nodes 

with basin-wide warming (cooling) are associated with El Niño (La Niña) in the tropical 

Pacific as in node G7 (A1).  On the other hand, nodes representing the IOD are only 

sometimes associated with ENSO events; G1 is only associated with a weak SSTA in 

the central equatorial Pacific whereas G2 is associated with a strong SSTA in the 

eastern equatorial Pacific.  This supports Saji et al. (1999), who suggested that IOD 
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may occur without ENSO events. 

As is well known, both IOD and ENSO are phase-locked to the annual cycle.  

Therefore, a certain SSTA pattern tends to appear more frequently during a certain 

season (Fig. 4).  To quantitatively discuss this, we have divided 7 x 7 SOM array in Fig. 

2 into five groups based on the Euclidean distance with the SSTA patterns of four 

corner nodes (A1, A7, G1, and G7) and zero SSTA, and calculated the frequency of 

each group during each season (Fig. 5a).  The IOD events start around the end of 

boreal spring, develop in summer, peak in fall, and decay quickly in winter (Saji et al. 

1999).  This is why the lower left quadrant corresponding to the positive IOD and the 

upper right quadrant corresponding to the negative IOD are more densely occupied in 

JJA (Jun.-Aug.) and SON (Sep.-Nov.) (Fig. 4) with frequency of around 15% (20%) for 

the positive (negative) IOD.  On the other hand, ENSO events tend to peak toward the 

end of a year and its influence on the SSTA of the tropical Indian Ocean peaks about 

one season later (Klein et al. 1999).  Hence, the lower right (upper left) quadrant 

corresponding to El Niño (La Niña) is more frequently occupied during DJF (Dec.-Feb.) 

and MAM (Mar.-May) with maximum in boreal spring (about 13%).  All these are 

consistent with the existing views of IOD and ENSO (Chang et al. 2006) 

The SOM is also successful in capturing the remarkable decadal variation as 

shown in Figs. 5b and 6.  During the 1950s, the lower left group of the frequency map 

is occupied only 5.6%, because no major positive IOD event occurs during this decade.  

Instead, basin-wide warming patterns represented by the lower right group appear 

frequently (15.7%) owing to the more frequent occurrence of El Niño.  This changes 
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dramatically in the 1960s and the 1970s, when the lower left quadrant is occupied more 

frequently (24.2% for 1960s and 14.2% for 1970s), indicative of more frequent 

occurrence of positive IOD events.  Furthermore, basin-wide cooling patterns linked 

with La Niña in the upper left corner are densely populated during the 1970s (26.7%).  

This is a result of four La Niña events that occurred in this decade.  The 1980s are 

again dominated by the basin-wide warming pattern in the lower right quadrant (23.2%) 

owing to the 1982/83 and 1986/87 El Niño events with minor IOD activity.  In fact, the 

sum of occurrence for positive and negative IOD-like SSTA is the lowest among five 

decades with 18.2%.   During the 1990s, two positive and negative IOD and El Niño 

events and one strong 1998/99 La Niña event occurred. Thus, the frequency map is 

rather uniformly distributed, although the negative IOD SSTA pattern is occupied 20.0% 

of time. 

As a whole, we may conclude that the SOM is successful in detecting the 

observed SSTA variability in the tropical Indian Ocean.  To discuss the variability in 

more detail, we use the model outputs from SINTEX-F1 model after validating them 

against the observation. 

 

3.2 Model output analysis 

To examine the model performance, we have applied a method used by Leloup et 

al. (2007b), who assessed the skill of CMIP3 models to simulate the ENSO.  In brief, 

we have applied the SOM to the combined (observed and modeled) SSTA data after 

normalizing each of them separately.  This will allow us to check whether the observed 
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and simulated SSTA patterns are similar or not.  Figure 7 shows the 9 x 9 SOM array 

and Fig. 8 shows the frequency map for both the observation and the model.  Again, 

the SSTA patterns with a basin-wide warming (cooling) are found around the lower right 

(upper left) corner, while those with the positive (negative) IOD are seen in the lower left 

(upper right) corner.   

All SSTA patterns seen in the observation are captured by the SINTEX-F1 model 

as a node without any shading does not exist in Fig. 8b; the SSTA patterns associated 

with El Niño and negative IOD events are well captured by the model.  This is 

remarkable considering the fact that many CMIP3 models show difficulties in capturing 

even the observed SSTA pattern in the tropical Pacific associated with ENSO events 

(Leloup et al. 2007b).  We note, however, that the percentage of model SSTA that is 

never seen in the observation amounts to 7.3%.  In particular, the nodes in the lower 

left corner with a strong positive IOD (I1 and I2) in the model are not covered by the 

observation.  This is because the model prefers a strong positive IOD owing to the 

shallower thermocline bias in the eastern equatorial Indian Ocean (Tozuka et al. 2007). 

To check whether the model is successful in simulating the seasonality of SSTA 

discussed in the previous subsection, we then calculate the seasonal frequency (Fig. 9).  

As in the observation, the model appears to capture more basin-wide warming and 

cooling in boreal winter and spring, and more dipole SSTA pattern in boreal summer 

and fall. 

The dominant simulated SSTA pattern also undergoes decadal modulation (Fig. 

10) as in the observation (Fig. 5b and 6).  For instance, years from 182 to 191 are not 
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associated with positive IOD SSTA patterns, but associated with frequent basin-wide 

warming due to El Niño as in the 1950s, whereas years from 42 to 51 are associated 

with frequent basin-wide cooling as in the 1970s.  This is contrasted with some other 

coupled GCMs, where occurrences of climate modes are too regular.  Given that the 

model has a relatively good skill in simulating the SSTA patterns and their seasonal and 

decadal variability, we expect that it has a potential to provide some insight into the 

tropical climate variability.  Also, the SOM is shown to be a useful tool to validate 

model outputs against observations. 

To capture the anomaly pattern in SST, rainfall, zonal wind stress, and sea level 

pressure associated with the basin-wide warming and the positive IOD, composite 

diagrams are constructed for each node (Fig. 11).  We have selected nodes with the 

positive IOD-like SSTA (H2 and I3) and a node with the basin-wide warming (I9).  

Nodes such as I1, I2, and H3 are not used for the composites, because these three 

nodes are associated with SSTA patterns that are never observed (Fig. 8).  As 

expected, H2 and I3 are associated with a warm (cold) SSTA in the western (eastern) 

tropical Indian Ocean with an easterly wind stress anomaly and I9 is associated with El 

Niño in the Pacific with a basin-wide warming in the tropical Indian Ocean.  The 

composite diagrams show interesting features in the SSTA patterns for the tropical 

Pacific; H2 shows a weak positive SSTA in the central equatorial Pacific, whereas I3 

and I9 are associated with a strong warming in the eastern equatorial Pacific.  The 

Pacific SSTA pattern of H2 reminds us of the SSTA in 1994 and El Niño Modoki (Ashok 

et al. 2007; Weng et al. 2007).  To investigate the possible link between the IOD and 
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the warming in the central equatorial Pacific will be an interesting topic to deepen our 

understanding on the connection between IOD and ENSO (Yamagata et al. 2004). 

There is a remarkable difference in the rainfall anomaly over the tropical Indian 

Ocean, especially near East Africa.  It receives more rainfall only when the SSTA over 

the tropical Indian Ocean is associated with a warm (cold) SSTA to the west (east) as in 

H2 and I3.  In contrast, a weak negative rainfall anomaly is seen in I9 for cases of 

strong warming over the eastern equatorial Pacific and basin-wide warming over the 

Indian Ocean.  This supports Behera et al. (2005), who demonstrated that the positive 

IOD causes the enhanced East African short rains. 

In H2 and I3, a distinct dipole pattern is seen in SLPA with a negative (positive) 

SLPA to the west (east).  In particular, the large SLPA over the Maritime Continent 

suggests that the IOD events affect the Southern Oscillation through its influence on the 

surface pressure field near Darwin, Australia as shown by Behera and Yamagata 

(2003) for the observation.  There is another interesting difference between H2 and I9 

even though both of them show a positive SSTA in the equatorial Pacific.  The SLPA in 

I9 shows an east-west asymmetry over the Pacific, indicative of negative Southern 

Oscillation Index (SOI) (Walker, 1924).  However, no statistically significant SLPA is 

found in H2.  This suggests that the westerly wind anomaly seen along the equatorial 

Pacific in H2 is triggered by the significant positive SLPA around the maritime continent 

generated by the IOD. 

 

4. Conclusions 
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Using the Self-Organizing Map (SOM) analysis, we have investigated the tropical 

Indian Ocean climate variability.  The SOM successfully captured the dipole SSTA 

pattern associated with the Indian Ocean Dipole (IOD) and basin-wide warming 

(cooling) associated with El Niño (La Niña) in the observation data of the HadISST.  

The IOD pattern appears during boreal summer and fall, while the ENSO pattern shows 

up more often during boreal winter and spring, confirming that these phenomena are 

phase-locked to the annual cycle.  Furthermore, the occurrence of these patterns 

undergoes significant decadal variation.  The positive IOD pattern appears more 

frequently during the 1960s, 1970s, and 1990s, whereas the basin-wide warming 

pattern appears more often in the 1950s, 1980s, and 1990s. 

Then, we have examined the outputs from 200 years integration of SINTEX-F1 

model that successfully captured the above features.  Composite diagrams 

constructed for nodes in the SOM array for the simulated SSTA have revealed 

interesting differences.  For the nodes with basin-wide warming, a strong positive 

SSTA in the eastern equatorial Pacific, together with a negative Southern Oscillation is 

seen.  These nodes are also associated with a weak negative precipitation anomaly in 

East Africa.  On the other hand, the nodes with the positive IOD are associated with a 

weak positive SSTA over the central equatorial Pacific or a positive SSTA over the 

eastern equatorial Pacific.  These nodes show a positive (negative) sea level pressure 

anomaly in the eastern (western) tropical Indian Ocean.  In contrast to the nodes with 

basin-wide warming, they are associated with a positive precipitation anomaly over East 

Africa.  In general, the SOM derives results similar to observation. 
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The SOM approach seems to be a powerful analysis method in climate research; 

it is successful in describing the SSTA variability in the tropical Indian Ocean and useful 

in validating model outputs against observations.  As is clear from our results, the SOM 

allows us to construct composite diagrams without either introducing indices based on a 

priori knowledge or obtaining principal components by the EOF analysis.  Also, we are 

away from a danger of discussing a statistical artifact as in the EOF analysis, since 

artificial nodes that appear in a SOM array is never occupied (cf. Liu et al. 2006).  Of 

course, a following method similar to the SOM can be used to check whether a pattern 

extracted by EOF is real or not.  After extracting first seven modes using the EOF 

method, the observed SSTA patterns are projected onto these modes based on the 

Euclidean distance.  The frequency of projections on each EOF mode is shown in Fig. 

12.  As expected, grave modes with larger variance have higher frequency.  More 

importantly, the nodes for the second EOF mode representing the IOD are found, 

suggesting that the IOD is not a statistical artifact of the EOF method (cf. Behera et al. 

2003).  However, this method is limited by the orthogonality condition.  Moreover, the 

EOF method cannot separate modes when several modes have similar variance as 

sample vectors become a random mixture of the true eigenvectors (North et al. 1982).  

In contrast, the SOM method can separate modes even when they have the same 

variance (see Appendix).  Although linear statistical analyses cannot detect asymmetry 

between a positive phase and a negative phase of a particular mode, the SOM method 

can.  This is another advantage.  Actually, we see asymmetry in the positive and 

negative IOD.  The difference in the basin-wide warming and cooling (Fig. 2) is also 
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derived, and Leloup et al. (2007a) were also successful in showing asymmetry in El 

Niño and La Niña using the SOM.  Furthermore, differences among events can only be 

captured by the SOM.  For instance, as shown in Figs. 2 and 3, the positive IOD is 

associated with the maximum in positive SSTA over the central equatorial Indian Ocean 

in node G1, whereas that is located in the Arabian Sea in node G2.  All of these 

suggest that the SOM is a very useful tool in discussing large-scale ocean-atmosphere 

coupled phenomena.  In the present article, we have provided one such concrete 

example for the tropical Indian Ocean climate variability. 
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Appendix 

To examine whether SOM and EOF can capture two climate modes with the same 

variance, we have generated an artificial SSTA data by 

SSTA x, y,t( ) = pc1 t( ) ! EOF1(x, y) + pc2 t( ) ! EOF2(x, y) + noise x, y,t( )   . 

Here, pc1 t( )  and pc2 t( )  are the first two normalized principal components, and 

EOF1 x, y( )  and EOF2 x, y( )  are the normalized eigenfunctions or spatial patterns of 

the first two EOF modes of the tropical Indian Ocean shown in Fig. 12a.  Note that we 

made the random noise noise x, y,t( ) to contribute to about 10% of the total variance 

and each of the first two modes explains about 45% of the total variance as they are 

normalized. 

When the SOM method is applied to this data, an SOM array, which is very similar 

to Fig. 2, is obtained (figure not shown).  However, as is clear from Fig. A1, the EOF 

method failed to capture the original SSTA pattern for the first two modes shown in Fig. 

12.  The first EOF mode in Fig. A1 has a larger SSTA in the southeastern tropical 

Indian Ocean, whereas that in Fig. 12a has a larger SSTA in the west.  We note that 

this mixture occurs even when more than three modes have a similar variance and 

rotated EOF could not provide a remedy for this particular problem (see also Behera et 

al. 2003).  A similar pitfall was also met by Dommenget and Latif (2002). 
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Figure captions 

Figure 1: Schematic diagram showing how to apply the SOM to obtain Fig. 2. 

Figure 2: 7 x 7 SOM array of observed SSTA in the tropical Indian Ocean (40°-120°E, 

17.5°S-17.5°N).  Each node represents a SSTA pattern in the tropical Indian 

Ocean.  All nodes are divided into five groups based on the Euclidean distance 

with the SSTA pattern of four corner nodes (A1, A7, G1, and G7) and zero SSTA, 

and they are shown by dashed boxes. 

Figure 3: Composite diagrams of observed SSTA for nodes A1, A6, A7, G1, G2, and 

G7 in the SOM array of Fig. 2.  Shading indicates anomalies exceeding 90% 

significance when tested by two-tailed t-test. 

Figure 4: Seasonal frequency map of the 7 x 7 SOM array showing how frequently 

(in %) each SSTA pattern shown in Fig. 2 is observed in each season.  A node 

without any shading indicates that the SSTA pattern of the node is never seen in a 

particular season. 

Figure 5: Bar diagram showing (a) seasonal and (b) decadal frequency of each group.  

The 7 x 7 SOM array in Fig. 2 is divided into five groups based on the Euclidean 

distance with the SSTA pattern of four corner nodes (A1, A7, G1, and G7) and 

zero SSTA. 

Figure 6: Decadal frequency maps of the 7 x 7 SOM array.  They show how frequently 

(in %) each SSTA pattern shown in Fig. 2 is observed in each decade. 

Figure 7: As in Fig. 2, but for the combined normalized SSTA including both 588 

months of observed SSTA and 2400 months of simulated SSTA. 
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Figure 8: Frequency map of the 9 x 9 SOM array shown in Fig. 7 for (a) HADISST and 

(b) SINTEX-F1 model. 

Figure 9: Bar diagrams showing how frequently each group is seen in each season for 

(a) the observation and (b) the SINTEX-F1 model.  The 9 x 9 SOM array in Fig. 7 

is divided into five groups based on the Euclidean distance with the SSTA pattern 

of four corner nodes (A1, A9, I1, and I9) and zero SSTA.   

Figure 10: As in Fig. 9, but shows how frequently each group is seen in each decade in 

the SINTEX-F1 model. 

Figure 11: Composite diagrams of simulated SSTA, rainfall anomaly, zonal wind stress 

anomaly, and SLPA for nodes H2, I3, and I9 in the SOM array of Fig. 7.  Shading 

indicates anomalies exceeding 95% significance for precipitation and 99% 

significance for other variables when tested by two-tailed t-test. 

Figure 12: (a) Spatial patterns of the first seven EOF modes for observed SSTA in the 

tropical Indian Ocean (40°-120°E, 17.5°S-17.5°N).  Values in parentheses show 

the variance contribution of each mode.  (b) Frequency map of the first seven 

EOF modes.  For example, the value and shading corresponding to “1” on the 

x-axis and “-1.0” on the y-axis indicate that the frequency of occurrence of the first 

EOF mode with a basin-wide cooling is 25.0%.  “0” on the x-axis indicates the 

frequency of occurrence that the SSTA is closest to zero SSTA in terms of the 

Euclidean distance. 

Figure A1: First two EOF modes obtained from the artificial SSTA data.  Values in 

parentheses show the variance contribution of each mode. 
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Figure 1: Schematic diagram showing how to apply the SOM to obtain Fig. 2.  
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Figure 2: 7 x 7 SOM array of observed SSTA in the tropical Indian Ocean (40°-120°E, 

17.5°S-17.5°N).  Each node represents a SSTA pattern in the tropical Indian Ocean.  

All nodes are divided into five groups based on the Euclidean distance with the SSTA 

pattern of four corner nodes (A1, A7, G1, and G7) and zero SSTA, and they are shown 

by dashed boxes. 
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Figure 3: Composite diagrams of observed SSTA for nodes A1, A6, A7, G1, G2, and 

G7 in the SOM array of Fig. 2.  Shading indicates anomalies exceeding 90% 

significance when tested by two-tailed t-test. 
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Figure 4: Seasonal frequency map of the 7 x 7 SOM array showing how frequently 

(in %) each SSTA pattern shown in Fig. 2 is observed in each season.  A node without 

any shading indicates that the SSTA pattern of the node is never seen in a particular 

season.  
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Figure 5: Bar diagram showing (a) seasonal and (b) decadal frequency of each group.  

The 7 x 7 SOM array in Fig. 2 is divided into five groups based on the Euclidean 

distance with the SSTA pattern of four corner nodes (A1, A7, G1, and G7) and zero 

SSTA. 
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Figure 6: Decadal frequency maps of the 7 x 7 SOM array.  They show how frequently 

(in %) each SSTA pattern shown in Fig. 2 is observed in each decade. 
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Figure 7: As in Fig. 2, but for the combined normalized SSTA including both 588 

months of observed SSTA and 2400 months of simulated SSTA. 
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Figure 8: Frequency map of the 9 x 9 SOM array shown in Fig. 7 for (a) HADISST and 

(b) SINTEX-F1 model. 
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Figure 9: The 9 x 9 SOM array in Fig. 7 is divided into five groups based on the 

Euclidean distance with the SSTA pattern of four corner nodes (A1, A9, I1, and I9) and 

zero SSTA.  Bar diagrams show how frequently each group is seen in each season for 

(a) the observation and (b) the SINTEX-F1 model.   
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Figure 10: As in Fig. 9, but shows how frequently each group is seen in each decade in 

the SINTEX-F1 model. 
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Figure 11: Composite diagrams of simulated SSTA, rainfall anomaly, zonal wind stress 

anomaly, and SLPA for nodes H2, I3, and I9 in the SOM array of Fig. 7.  Shading 

indicates anomalies exceeding 95% significance for precipitation and 99% significance 

for other variables when tested by two-tailed t-test.  
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Figure 12: (a) Spatial patterns of the first seven EOF modes for observed SSTA in the 

tropical Indian Ocean (40°-120°E, 17.5°S-17.5°N).  Values in parentheses show the 

variance contribution of each mode.  (b) Frequency map of the first seven EOF modes.  

For example, the value and shading corresponding to “1” on the x-axis and “-1.0” on the 

y-axis indicate that the frequency of occurrence of the first EOF mode with a basin-wide 

cooling is 25.0%.  “0” on the x-axis indicates the frequency of occurrence that the 

SSTA is closest to zero SSTA in terms of the Euclidean distance. 
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Figure A1: First two EOF modes obtained from the artificial SSTA data.  Values in 

parentheses show the variance contribution of each mode. 

 


