The relation between interannual variability of stratospheric final warming (SFW) and tropospheric circulation in the Southern Hemisphere (SH) is explored using reanalysis data and a linear barotropic model. The analysis is focused on quasi-stationary waves with zonal wavenumber 1 (s = 1 QSWs; s is zonal wavenumber), which are the dominant component of the SH extratropical planetary waves. First, interannual variability of SFW is investigated in terms of amplitudes of stratospheric and tropospheric s = 1 QSWs, and wave transmission properties of the mean flow from the late austral winter to spring. Upward Eliassen–Palm flux due to s = 1 QSWs is larger from the stratosphere down to the middle troposphere in early-SFW years than late-SFW years. More favorable conditions for propagation of s = 1 stationary waves into the stratosphere are identified in early-SFW years. These results indicate that the amplification of tropospheric s = 1 QSWs and the favorable conditions for their propagation into the stratosphere lead to the amplification of stratospheric s = 1 QSWs, and hence earlier SFWs. Next, numerical calculations using a linear barotropic model are performed to explore how tropospheric s = 1 QSWs at high latitudes amplifies in early-SFW years. By using tropical Rossby wave source and horizontal winds in the reanalysis data as a source and background field, respectively, differences in s = 1 steady responses between early- and late-SFWs are examined at high latitudes. It is suggested that the larger amplitudes of tropospheric s = 1 QSWs in early-SFW years are attributed to differences in wave propagation characteristics associated with structure of the midlatitude jets in austral spring.