Roles of Mesoscale Eddies in the Kuroshio Paths

Yasumasa Miyazawa

Frontier Research System for Global Change/JAMSTEC, Yokohama City, Kanagawa, Japan

Xinyu Guo

Frontier Research System for Global Change/JAMSTEC, Yokohama City, Kanagawa, Japan, and Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan

Toshio Yamagata

Frontier Research System for Global Change/JAMSTEC, Yokohama City, Kanagawa, Japan, and Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan

(Manuscript received 11 June 2002, in final form 8 April 2004)


ABSTRACT

A high-resolution ocean general circulation model is developed to simulate connections between the Kuroshio path variations and mesoscale eddy activities as realistically as possible. The climatological mean of the modeled Kuroshio takes a nearshore nonlarge meander path. It is found that the model is capable of simulating two types of nonlarge meander state and a possible version of the large meander state. The offshore nonlarge meander is generated through interaction between the Kuroshio and an anticyclonic eddy. The large meander occurs just after significant intensification of the anticyclonic Kuroshio recirculation; successive intrusion of anticyclonic eddies from the upstream region is responsible for this process. Those anticyclonic eddies are advected by the Kuroshio from the region northeast of Luzon Island and increase the upstream Kuroshio volume transport on an interannual time scale. The cyclonic eddies propagating from the Kuroshio Extension region, on the other hand, weaken the Kuroshio meander after the merger. The Kuroshio path variations south of Japan thus seem to be closely related to eddy activities in the subtropical gyre system.