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Abstract 27 

This study examines southern African summer rainfall and tropical temperate 28 

troughs (TTTs) simulated with three versions of an atmospheric general circulation 29 

model differing only in the convection scheme.  All three versions provide realistic 30 

simulations of key aspects of the summer (November-February) rainfall, such as the 31 

spatial distribution of total rainfall and the percentage of rainfall associated with TTTs.  32 

However, one version has a large bias in the onset of the rainy season.  Results from 33 

self-organizing map (SOM) analysis on simulated daily precipitation data reveals that 34 

this is because the occurrence of TTTs is underestimated in November.  This model 35 

bias is not related to westerly wind shear that provides favorable conditions for the 36 

development of TTTs.  Rather, it is related to excessive upper level convergence and 37 

associated subsidence over southern Africa. 38 

Furthermore, the model versions are shown to be successful in capturing the 39 

observed drier (wetter) conditions over the southern African region during El Niño (La 40 

Niña) years.  The SOM analysis reveals that nodes associated with TTTs in the 41 

southern (northern) part of the domain are observed less (more) often during El Niño 42 

years, while nodes associated with TTTs occur more frequently during La Niña years.  43 

Also, nodes associated with dry conditions over southern Africa are more (less) 44 

frequently observed during El Niño (La Niña) years.  The models tend to perform 45 

better for La Niña events, because they are more successful in representing the 46 

observed frequency of different synoptic patterns. 47 
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1. Introduction 48 

Tropical-temperate troughs (TTTs) provide a substantial portion of summer 49 

rainfall over southern Africa (Africa south of 12.5oS).  During a TTT event, tropical 50 

convection is linked with a transient system in the mid-latitudes (e.g. Vigaud et al. 51 

2012), and a band of cloud and rain extending from the northwest to the southeast is 52 

formed (Harrison 1984; Todd and Washington 1999; Washington and Todd 1999; Todd 53 

et al. 2004; Ratna et al. 2012).  The positioning of the Angola Low or related troughs 54 

over the northwestern part of the subcontinent plays an important role in the formation 55 

of TTTs over southern Africa (Lyon and Mason, 2007, 2009; Vigaud et al. 2008). 56 

The interannual variation of rainfall in this region has been shown to be 57 

influenced by El Niño-Southern Oscillation (ENSO) (e.g. Lindesay and Vogel 1990; 58 

Richard et al. 2000; Cook 2000, 2001; Manhique et al. 2011) and sea surface 59 

temperature (SST) anomalies in the surrounding oceans (e.g. Mason 1995; Rouault et 60 

al. 2003; Washington and Preston 2006; Williams et al. 2008; Vigaud et al. 2012), 61 

including those associated with the subtropical dipole modes (Reason 2002; 62 

Fauchereau et al. 2009; Morioka et al. 2010, 2011, 2012).  To mitigate impacts of the 63 

above-mentioned interannual variations, skillful predictions are required (Behera and 64 

Yamagata 2001; Reason et al. 2006; Landman et al. 2009).  Landman and Beraki 65 

(2012) conducted retroactive multi-model forecasts over southern Africa, and found 66 

that their forecasts had relatively good skill during El Niño and La Niña years, but 67 

performed poorly during neutral years (years without either El Niño or La Niña events).  68 

Also, Yuan et al. (2013) showed that a coupled general circulation model (CGCM) with 69 
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high skills in predicting ENSO and the subtropical dipole modes had relatively high 70 

skills in predicting southern African precipitation anomalies in a broad region south of 71 

10°S.  Although these studies have illustrated some useful skill in forecasting summer 72 

rainfall over southern Africa, the simulation and prediction of rainfall over this region still 73 

faces numerous deficiencies. For example, Kataoka et al. (2012) showed that almost 74 

all CGCMs that participated in the third phase of the Coupled Model Intercomparison 75 

Project (CMIP3; Meehl et al. 2007) failed to simulate the relationship between the 76 

precipitation anomaly over southern Africa and global SST anomalies.  Also, Lyon and 77 

Mason (2009) showed that both atmospheric general circulation models (AGCMs) 78 

forced by the observed SST and hindcast seasonal forecasts from CGCMs were 79 

unable to reproduce atmospheric circulation anomalies over southern Africa during the 80 

strong El Niño event of January-March 1998. 81 

Realistic simulations of summer rainfall are important to obtain plausible 82 

projections of future climate change over southern Africa, which may in turn be helpful 83 

for adaptation (e.g. Thomas et al. 2007).  The projection of Engelbrecht et al. (2009) 84 

suggested a general decrease in rainfall over southern Africa, but with more frequent 85 

occurrence of TTTs over the southeastern part of the subcontinent during mid-summer.  86 

The latter resulted from the intensification of the Mascarene High over the 87 

southwestern Indian Ocean under global warming.  On the other hand, Shongwe et al. 88 

(2009) have shown that in the CMIP3 models, the rainfall onset over southern Africa is 89 

delayed under global warming, owing to a significant reduction in moisture supply from 90 

the southwestern Indian Ocean.  Also, Lyon (2009) showed a future drying trend in 91 
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austral summer rainfall, although this was found to be a model-dependent result, and 92 

the experiments of Tadross et al. (2005) indicated that choice of cumulus convection 93 

scheme may be regarded as an important source of uncertainty in regional projections 94 

of future rainfall over southern Africa.  The identification of model biases associated 95 

with a particular convection scheme, and the eventual improvement or optimal 96 

selection of schemes, may contribute to a reduction in uncertainties associated with the 97 

projection of future climate change over this region. 98 

Realistic modeling of the basic climatic state is the first step towards the realistic 99 

simulation of interannual variations, accurate seasonal prediction, and more reliable 100 

projections of future climate change. However, realistic simulations of the southern 101 

African rainfall climatology remain a big challenge, partly because of the interaction of 102 

tropical and extra-tropical processes over this region.  In this regard, van den Heever 103 

et al. (1997) used a regional atmosphere model and successfully simulated many 104 

aspects of two TTT events.  More recently, several studies have attempted to improve 105 

the simulation of the rainfall over southern Africa (Crétat et al. 2012; Ratnam et al. 106 

2012).  Crétat et al. (2012) conducted 27 sensitivity experiments using three different 107 

kinds of parameterizations for cumulus convection, planetary boundary layer, and 108 

microphysics in a regional atmospheric model.  Ratnam et al. (2012) compared results 109 

from the same regional model, which was forced by observed SSTs or coupled with an 110 

ocean mixed-layer model.  However, these regional models depend heavily on the 111 

lateral boundary conditions provided by global models or reanalysis data, making it 112 

somewhat difficult to determine the relative contribution of convection schemes in 113 
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causing model biases.  Therefore, we here analyze three versions of the same AGCM 114 

differing only in the convection scheme, in light of obtaining more realistic simulations 115 

of precipitation over the southern African region. Such an approach was useful for 116 

understanding of precipitation in other regions such as in India (e.g. Singh et al. 2011; 117 

Sinha et al. 2012). 118 

This paper is organized as follows.  A brief description of the model, convection 119 

schemes, data, and methodology is given in the next section.  In section 3, we 120 

compare seasonal variations in precipitation over the southern African region and TTTs 121 

simulated by three versions of our AGCM, and discuss possible causes of model 122 

biases.  We further evaluate model performances in simulating interannual variations, 123 

with a special focus on the relation with ENSO, in section 4.  Summary and 124 

discussions are provided in the final section. 125 

 126 

2. Model, data, and methodology 127 

2.1 Model and data 128 

The AGCM used in this study is the Frontier Atmospheric General Circulation 129 

Model (FrAM; Guan et al. 2000).  Influences of climate variability related to Indian 130 

Ocean Dipole and ENSO on regional climate is relatively well captured by the FrAM 131 

(Chakraborty et al. 2005; Yuan et al. 2012).  It is the atmospheric component of the 132 

University of Tokyo Coupled general circulation model (Tozuka et al. 2006, 2011; Doi 133 

et al. 2010).  The model equations are solved on 28 hybrid levels in the vertical, from 134 

the surface up to 10 hPa level, by using the spectral transform method with triangular 135 
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truncation at wavenumber 42 (T42).  The longwave radiation scheme is based on the 136 

multiple parameter random model of Shibata and Aoki (1989) and Shibata (1989).  In 137 

this scheme, H2O, CO2, and O3 are considered as absorbers of the longwave radiation 138 

and the cloud emissivity is estimated as a function of temperature.  The shortwave 139 

radiation scheme is based on Lacis and Hansen (1974), except for the calculation for 140 

partially cloudy skies.  Here, H2O and O3 are considered as absorbers of the 141 

shortwave radiation.  The cloud fraction is assumed to be a function of relative 142 

humidity and calculated following Slingo and Slingo (1991).  The assumption of 143 

random overlapping is used for both longwave and shortwave radiation.  For the land 144 

surface model, we used that of Viterbo and Beljaars (1995).  The surface eddy fluxes 145 

of momentum, heat, and moisture are calculated using bulk formula (Louis et al. 1982), 146 

and the effect of subgrid-scale orography induced by the gravity wave drag is 147 

parameterized after Palmer et al. (1986).   148 

For the parameterization of cumulus convection, schemes developed by Kuo 149 

(1974), Emanuel (1991), and Tiedtke (1989) are used in this study (see Stensrud, 2007 150 

for a review).  Briefly, Kuo (1974) formulated a parameterization in which convective 151 

precipitation is proportional to total column moisture convergence and it is regarded as 152 

a deep-layer control scheme.  The parameterization proposed by Tiedtke (1989) is a 153 

mass flux scheme with updraft plume, downdraft plume, and environmental subsidence. 154 

Entrainment of the updraft plumes is assumed to be proportional to the large-scale 155 

moisture convergence, while downdraft plumes are assumed to start at the level of free 156 

sink and proportional to the upward mass flux.  The precipitation rate is equal to 157 
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condensed liquid water in the above plume model.  Emanuel (1991) developed a 158 

parameterization categorized as a mass flux scheme that takes into account the 159 

collective effects of the various subparcels in the cloud.  A specified fraction of 160 

condensed water from the subparcels falls as precipitation.  We call these three 161 

experiments FrAM_Kuo, FrAM_Emanuel, and FrAM_Tiedtke, respectively.  We note 162 

that we do not intend to discuss superiority of a particular scheme in this study.  163 

Rather, the three experiments should be considered as sensitivity experiments of a 164 

single AGCM.  Also, their performance depends on the resolution of the model, and 165 

the parameterization of Kuo (1974) tends to perform better with larger grid size (Singh 166 

et al. 2011). 167 

This model is integrated from 1981 to 2008 using monthly SST and sea ice cover 168 

data from Hurrell et al. (2007).  This dataset has been used in the Atmospheric Model 169 

Intercomparison Project (AMIP) simulations.  For each experiment, five different initial 170 

conditions are used to generate five ensemble members, and outputs after 1982 are 171 

used for the present analysis.  To generate initial conditions, we have spun up the 172 

model from a calm and isothermal atmosphere for about three years (the spin-up time 173 

varies slightly for the five different ensemble members, being three years for one 174 

member with the others 5, 10, 15, and 20 days shorter, respectively), using the monthly 175 

climatologies of SSTs as a lower boundary forcing.  The CO2 concentration was set to 176 

the AMIP-specified value of 348 ppmv, and the solar constant was set to AMIP-177 

specified 1365 W m-2. 178 

We also use the Global Precipitation Climatology Project (GPCP) data (Adler et 179 
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al., 2003) for precipitation, and the National Centers for Environmental Prediction 180 

(NCEP)/National Center for Atmospheric Research (NCAR) reanalysis data (Kalnay et 181 

al., 1996) for wind, sea-level pressure (SLP), temperature, and specific humidity, to 182 

validate the model simulations.  We note that we obtained qualitatively similar results 183 

even when we used the NCEP-DOE reanalysis 2 data (Kanamitsu et al. 2002) and 184 

ECMWF reanalysis data (Uppala et al. 2005), instead of the NCEP/NCAR reanalysis 185 

data. 186 

 187 

2.2 Methodology: Self-organizing maps 188 

To capture synoptic precipitation patterns, we have applied self-organizing map 189 

(SOM) analysis (Kohonen 2001) to daily rainfall anomaly data from November to 190 

February (Fig. 1).  This method has been successfully used to study climate variations 191 

(Tozuka et al. 2008; Morioka et al. 2010) and synoptic weather patterns (Nicholls et al. 192 

2010; MacKellar et al. 2010).  In this study, we use a software package called 193 

SOM_PAK 3.1 (Kohonen et al. 1995), and readers are referred to Kohonen (1982, 194 

2001) for more details about the SOM. 195 

The input data is first prepared from both observed and simulated daily rainfall 196 

anomalies, by interpolating the observed data into the T42 grid of the AGCM over the 197 

southern African region (43.254°S-12.558°S, 0°-50.625°E).  Since the daily rainfall 198 

data of the GPCP is available only from 1997 to 2008, we focus on the rainy seasons 199 

(November to February) from 1997/98 to 2007/08.  As a result, the input matrix 200 

consists of 228 grids points with 19 grids in the zonal direction and 12 grids in the 201 
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meridional direction, and 21120 days of data (1320 days of data for the observations 202 

and five ensembles of 1320 days of data for each version of the AGCM).  We note 203 

that simulated daily precipitation data are used without taking the ensemble mean 204 

when we perform the SOM analysis.  Then, the dimension of the two-dimensional 205 

SOM array is chosen to be 5 nodes x 4 nodes.  The topology of the array is selected 206 

to be rectangular, and the reference vectors are initialized to random values.  We 207 

have chosen to use a “bubble” function for the neighborhood function.  The training is 208 

undertaken in two steps; we use a larger initial learning rate and a neighborhood radius 209 

for the first phase to put reference vectors in an order, and a smaller rate and radius to 210 

tune the values of reference vectors in the second phase.  As a result, we have 211 

obtained 20 different daily precipitation patterns, which will be discussed in Sections 3 212 

and 4. 213 

 214 

2.3 Methodology: Equitable Threat Score 215 

Skills of the model in simulating interannual variations of precipitation are 216 

measured using equitable threat score (ETS), which is defined as 217 

 

ETS =
H ! C

F + A ! H ! C
 218 

(Rogers et al. 1996; Chakraborty and Krishnamurty 2009).  Here, 

 

F  and 

 

A  are 219 

number of grids with simulated and observed precipitation exceeding a specified 220 

threshold, respectively, 

 

H  is the number of grids with both simulated and observed 221 

precipitation exceeding the threshold or number of hit, 

 

C = F ! A T  is the expected 222 
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number of hit by chance, and 

 

T  is the total number of grids.  Values of ETS may vary 223 

from -1/3 to 1 and an ETS of 1 signifies that the simulation is perfect.  We calculate 224 

the ETS for an area that covers African continent south of 15°S (11.25°E-42.1875°E, 225 

15.348°S-34.883°S). 226 

 227 

3. Seasonal variation 228 

The mean precipitation patterns over the southern African region during mid-229 

summer (November-February) are shown in Fig. 2.  Areas with high rainfall totals 230 

extend southeastward from the equatorial region to around 15°S, and then extend 231 

southward along the east coast of Mozambique and South Africa.  There is a marked 232 

west-east gradient in rainfall over the southern part of the subcontinent, with 233 

precipitation less than 2 mm day-1 in the southwest.  Over eastern South Africa, mid-234 

summer rainfall rates exceed 4 mm day-1.  A relatively dry region extends along 20° S, 235 

from the western subcontinent towards the east.  These observed features are well 236 

captured by all three versions of the model.  The feature of the dry slot extending 237 

eastwards along 20° S, and the precipitation maximum over eastern South Africa, are 238 

better captured in FrAM_Tiedtke and FrAM_Kuo.  However, the precipitation in the 239 

equatorial Africa and the southwestern tropical Indian Ocean to the north of 240 

Madagascar is too high in all three versions.  Also, the precipitation maximum over 241 

northern Madagascar is missing in FrAM_Tiedtke. 242 

Figure 3 shows the mean SLP around the southern African region.  All versions 243 

provide satisfactory simulations of the relative positions of the subtropical highs in both 244 
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the South Atlantic and the southern Indian Oceans, and the heat low over the 245 

subcontinent.  The maximum SLP in St. Helena High is overestimated by 2 hPa, whilst 246 

the heat low is simulated to be too deep, by about 5 hPa in all three versions.  Since 247 

these subtropical highs and the heat low play an important role in the formation and 248 

distribution of precipitation over the southern African region (Reason et al. 2006), the 249 

model's realistic representation of these highs and the low may be one of the reasons 250 

for the reasonably realistic simulation of mid-summer precipitation patterns over the 251 

region. 252 

Next, to examine the seasonal evolution of precipitation, observed and simulated 253 

monthly mean precipitation patterns are presented in Fig. 4.  From May to September, 254 

the region is dry in the observations and all three versions.  However, by November, 255 

the Inter-Tropical Convergence Zone (ITCZ) has progressed to the south of the equator, 256 

and precipitation greater than 2 mm day-1 occurs over vast areas of the subcontinent. 257 

The rainfall maximum over eastern South Africa is linked to that in the tropics by a 258 

band-like structure.  This large-scale pattern is well-captured in FrAM_Kuo and 259 

FrAM_Emanuel, although both of these versions exhibit a wet bias that is particularly 260 

strong in the tropics.  However, in FrAM_Tiedtke, the precipitation maxima over 261 

southern Africa and the tropics are not linked, and the region between 10°S and 25°S 262 

is relatively dry.  From January to March, most regions are observed to experience 263 

precipitation greater than 2 mm day-1 with the exception being the dry southwestern 264 

subcontinent.  The highest rainfall totals occur in a band in the vicinity of 15°S, 265 

indicative of the position of the ITCZ.  All three versions capture this broad-scale 266 
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pattern, although the precipitation maximum in March occurs too far south in 267 

FrAM_Kuo.  The observed feature of a dry slot extending eastward in the observations 268 

is well represented in FrAM_Emanuel and FrAM_Tiedtke.  In general, the seasonal 269 

evolution of rainfall is relatively well captured by all three versions, with the most 270 

significant bias in the delayed onset of the rainy season in FrAM_Tiedtke. 271 

To understand the seasonal variation in the rainfall and its biases, it is convenient 272 

to check the vertical stability.  Following Ninomiya (2008), we have calculated the 273 

vertical stability in the 850-500 hPa layer (Fig. 5), which is given by 274 

  (!e500 !!e850 ) / 3.5 , 275 

where 

 

!e500  and 

 

!e850  are equivalent potential temperature at 500 and 850 hPa, 276 

respectively.  In both the observation and the model, the southern African region is 277 

convectively unstable from November to March and convectively stable from May to 278 

September, in agreement with the rainy season in this region.  Furthermore, Fig. 6 279 

shows vertical velocity at 500 hPa.  In general, the models are successful in 280 

simulating the seasonal march of the vertical velocity.  However, the upward motion is 281 

too strong in all three versions in the tropics, which may be related to too much 282 

precipitation there.  Also, upward motion prevails in the southeastern part of South 283 

Africa throughout the year in the models, even though downward motion is seen in May 284 

and July in the observation.  This is related to the wet bias in the southeastern corner 285 

of the subcontinent, particularly in FrAM_Kuo. 286 

For quantitative comparison, we have calculated spatial correlation coefficients of 287 

rainfall over 0-60°E, 45°S-15°S between the GPCP observations and the three 288 
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versions of FrAM for each month (Fig. 7).  Generally, the correlation coefficients are 289 

high for all three versions throughout the year.  In particular, the correlation coefficient 290 

is higher than 0.79 (0.70) for all months in FrAM_Emanuel (FrAM_Kuo).  However, the 291 

correlation coefficient takes a minimum in all three versions in November, and as 292 

expected from Fig. 4, it becomes lower than 0.5 for FrAM_Tiedtke. 293 

One contributing factor for this dry bias in FrAM_Tiedtke may stem from a bias of 294 

simulating subsident conditions over southern Africa in November.  Figure 8 shows 295 

the velocity potential along with divergent wind at 200 hPa in November.  Spuriously 296 

strong upper level convergence extends from the southwestern Indian Ocean into the 297 

subcontinent in FrAM_Tiedtke, a feature that is likely to inhibit the formation of TTTs 298 

during this month.  It may also be noted that in FrAM_Emanuel, upper level 299 

divergence is simulated over southern Africa, rather than the relatively weak 300 

convergence present in FrAM_Kuo and in the observations. 301 

To investigate how well synoptic precipitation patterns are reproduced by the 302 

various AGCM versions, and whether the occurrence of TTTs in November is reduced 303 

in FrAM_Tiedtke, we have applied the SOM analysis to daily rainfall anomaly data.  304 

Twenty different precipitation patterns captured by the SOM are shown in Fig. 9.  The 305 

precipitation patterns that exhibit marked northwest to southeast alignments over 306 

southern Africa, with rainfall rates of more than 4 mm day-1 over some areas, are 307 

assumed to be associated with the formation of TTTs over this region.  Such patterns 308 

are found in the bottom row (nodes D1-D5) and left column (nodes A1-D1).  We note 309 

that our results are not very sensitive to the designation of additional nodes that exhibit 310 
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some TTT-like characteristics (e.g. node C5), since the qualitative results remains 311 

almost the same even if we add or remove one node.  The frequency map for both the 312 

observation and the model versions (Fig. 10) indicates that all 20 precipitation anomaly 313 

patterns seen in the observations are captured by the three versions (since a node with 314 

frequency of 0% does not exist in the model frequency maps).  The frequency of 315 

occurrence of TTT nodes is overestimated by FrAM_Kuo, whilst FrAM_Emanuel and 316 

FrAM_Tiedtke provide more realistic representations of these frequencies.  Also, as 317 

revealed by Figs. 11b, c, d, as much as 70% of simulated precipitation over 30°E-45°E, 318 

15°S-30°S is associated with TTTs.  This is in agreement with observations (Fig. 11a).  319 

However, FrAM_Kuo exhibits a bias in this regard, in that too high percentage of 320 

rainfall over the eastern part of the subcontinent occur in association with TTTs.  One 321 

possible reason for this bias is that the vertical stability over southern Africa is relatively 322 

weak in FrAM_Kuo, especially during the early part of the rainy season, and this may 323 

provide more favorable conditions for the development of TTTs in this version of the 324 

model (Fig. 5). 325 

Figure 12 shows how frequently each daily precipitation pattern appears each 326 

month from November to February.  In November, nodes A1-D1 and D2-D5 appear 327 

less frequently compared with other months in the observation.  This indicates that the 328 

occurrence of TTTs is lower during this month.  This tendency is exaggerated in 329 

FrAM_Tiedtke; nodes D1-D4 appears less frequently in November.  Therefore, the 330 

model bias as suggested earlier by Figs. 4 and 7 for FrAM_Tiedtke is indeed due to an 331 

underestimation in the occurrence of TTT events.  Also, nodes that represent TTTs 332 
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appear too frequently in FrAM_Kuo (also see Fig. 10b) and this explains why it 333 

overestimates the percentage of precipitation associated with TTTs (Fig. 11b). 334 

Figure 12 also serves to illustrate the sensitivity of TTT formation in the AGCM to 335 

various choices of convection schemes.  It is illuminating to investigate whether the 336 

differences in the simulated TTT frequencies are due to extra-tropical, or tropical 337 

processes.  The vertical shear in the zonal wind is displayed in Fig. 13, because 338 

westerly shear is known to provide a favorable condition for the development of TTTs 339 

(Todd and Washington 1999).  Since all three versions show strong westerly shear of 340 

about 30 m s-1 between 200 hPa and 850 hPa, which is slightly larger than the 341 

NCEP/NCAR reanalysis data, model biases in the westerlies do not seem to explain 342 

the different simulated frequencies of TTTs, and the less frequent occurrence of TTTs 343 

in FrAM_Tiedtke in November.  This result suggests that it is primarily the simulated 344 

tropical circulation that is sensitive to the choice of convection scheme. 345 

 346 

4. Interannual variation 347 

The correlation coefficients between the observed and simulated precipitation 348 

anomalies for November-February for the period of 1982-2008 are shown in Fig. 14.  349 

In all three versions, the model has the highest skills in the equatorial East Africa, and 350 

FrAM_Tiedtke has a correlation coefficient of above 0.6.  The precipitation in this 351 

region is strongly influenced by the Indian Ocean Dipole (Behera et al. 2005), and it 352 

may be relatively easy for the AGCM to reproduce rainfall anomalies forced by 353 

anomalous zonal SST gradient across the equatorial Indian Ocean.  Also, the 354 
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correlation coefficient is relatively high in the southern African region with the maximum 355 

correlation of 0.4 for FrAM_Kuo and 0.5 for FrAM_Tiedtke and FrAM_Emanuel. 356 

Also, we have evaluated the performance by calculating the ETS for both dry and 357 

wet conditions (Fig. 15).  In general, the model tends to have higher skill for dry 358 

conditions.  This is particularly true for FrAM_Tiedtke, which has an ETS of 0.16 with -359 

0.4 and -0.8 mm/day thresholds.  Among the three versions, FrAM_Tiedtke has the 360 

highest score, except for the 0.0 mm/day threshold for wet conditions.  However, the 361 

ETS is below 0.2 for all versions regardless of threshold values.  This suggests that 362 

we need a higher resolution model, or additional model improvements, to more 363 

faithfully simulate precipitation anomalies at a grid scale.  Indeed, Chakraborty and 364 

Krishnamurti (2009) revealed that downscaled forecasts show marked improvements 365 

compared with their coarse resolution forecasts for the Indian summer monsoon. 366 

Since the interannual variation in the southern African region is known to be 367 

influenced by ENSO (e.g. Lindesay and Vogel 1990; Richard et al. 2000), the 368 

difference in the skill levels mentioned above may be closely linked with that of the 369 

model to simulate the impacts of ENSO.  To examine influences of ENSO, we have 370 

defined ENSO years based on the Niño-3.4 index (Fig. 16), which is computed by 371 

taking an area-average of SST anomalies over the tropical eastern-central Pacific 372 

(120°W-170°W, 5°S-5°N).  Here, if the index is above (below) 1 standard deviation, 373 

we define the year as an El Niño (a La Niña) year.  As a result, we have two El Niño 374 

years (1997/98 and 2002/03), three La Niña years (1998/99, 1999/2000, and 2007/08), 375 

and six normal years (2000/01, 2001/02, 2003/04, 2004/05, 2005/06, and 2006/07). 376 
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Figure 17 shows composites of precipitation anomalies for ENSO years.  As has 377 

been shown to be typical by previous studies (e.g. Lindesay and Vogel 1990; Richard 378 

et al. 2000), the observation shows negative (positive) precipitation anomalies over the 379 

southern African region during El Niño (La Niña) years.  East Africa exhibits 380 

precipitation anomalies opposite to that of the southern African region. This general 381 

pattern is well captured by all three versions, but there are some differences between 382 

the observation and the simulations.  The strongest negative precipitation anomalies 383 

during El Niño are found over Mozambique and in Zimbabwe in the observations, but in 384 

FrAM_Kuo, wet anomalies extend from the north into Mozambique.  In 385 

FrAM_Emanuel, the largest negative anomalies occur somewhat to the south than is 386 

observed.  Although negative precipitation anomalies extend too far into the Indian 387 

Ocean, FrAM_Tiedtke simulates the location of largest negative precipitation anomalies 388 

over Mozambique relatively well, and this explains why it has the best ETS (Fig. 15a).  389 

Also, the strongest positive precipitation anomalies during La Niña is found over 390 

Mozambique in the observation, but all versions of the model displaces this maximum 391 

to the south over southeastern South Africa.  This is why the ETS for the wet 392 

conditions tends to be lower compared with that in the dry conditions (Fig. 15b.) 393 

To examine interannual variations in the synoptic precipitation patterns, we have 394 

checked how frequently each precipitation pattern appears compared with the 395 

climatology during El Niño, normal, and La Niña years in the GPCP observation and 396 

three versions of FrAM (Fig. 18).  For quantitative comparison of the three versions' 397 

performance, phase synchronization (ps) is calculated as: 398 
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ps = (n-n')/n *100 399 

(Misra 1991).  Here, n is the total number of nodes and n' is the number of nodes for 400 

which the anomalies in the observation and the model have opposite signs (out of 401 

phase).  Therefore, ps = 0, if signs of anomalies simulated by one version of our 402 

AGCM are opposite to those of the GPCP observation for all 20 nodes, and ps = 100, if 403 

signs of anomalies in a version are consistent with the observation for all 20 nodes. 404 

During El Niño years, nodes associated with TTTs in the southern (northern) part 405 

of the domain appear less (more) frequently in the observations; nodes D1-D5 (A1-C1) 406 

have negative (positive) anomalies.  This is well captured by FrAM_Tiedtke, as is also 407 

evident from the fact that this version has the highest phase synchronization among the 408 

three versions.  However, all versions fail to capture positive anomalies in nodes A2-409 

A5 that show dry conditions over southern Africa.  This is one of the reasons why the 410 

phase synchronization remains around 50 for the all three versions. 411 

On the other hand, nodes representing TTTs are observed to occur more 412 

frequently during La Niña years (note the positive anomalies for nodes A1, B1 and D2-413 

D5 in Fig. 18).  FrAM_Emanuel best captures positive anomalies in these nodes with 414 

three nodes showing positive anomalies.  In contrast to the situation during El Niño 415 

years, FrAM_Emanuel and FrAM_Tiedtke tend to perform better in capturing the 416 

negative anomalies in Nodes A2-A5.  Because these dry patterns appear less 417 

frequently, the southern African region experiences more rainfall during La Niña years 418 

in general.  As a result, FrAM_Emanuel and FrAM_Tiedtke have a high phase 419 

synchronization of 70 and 65, respectively, whereas FrAM_Kuo has a low phase 420 
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synchronization of 45. 421 

As expected in the absence of strong influences from ENSO, the frequency 422 

anomaly is within ±1% in more than 80% of the nodes during the normal years.  423 

FrAM_Tiedtke (FrAM_Kuo) has the highest (lowest) skill with the phase 424 

synchronization of 65 (35). 425 

In summary, the model versions perform better in simulating the interannual 426 

variations in the precipitation pattern for La Niña years compared to El Niño or normal 427 

years, and FrAM_Emanuel and FrAM_Tiedtke have higher skills in general compared 428 

with FrAM_Kuo. 429 

 430 

5. Summary and discussions 431 

Using three versions of the same AGCM differing only in the convection scheme, 432 

we have evaluated skills of models in simulating southern African rainfall and TTT 433 

attributes.  All three versions have relatively good capabilities in simulating the 434 

summer precipitation, although one version (FrAM_Tiedtke) has a serious bias in the 435 

onset.  This version simulates excessive upper level convergence and associated 436 

subsidence over southern Africa.  As a result, development of TTTs is suppressed 437 

and connection of tropical and extra-tropical precipitation is delayed by about one 438 

month.  It is interesting to note that for all three versions, the ability to represent the 439 

climatology of monthly rainfall patterns is lowest in November.  Since the onset of 440 

rainy season is very important for subsistence farming in the southern African region, 441 

this model bias is potentially a limiting factor to the skill of early-season seasonal 442 
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forecasts over the region. 443 

Regarding the simulation of interannual variation, all three versions have 444 

relatively good skill, particularly in equatorial East Africa and South Africa.  In addition, 445 

they are successful in capturing negative (positive) precipitation anomalies over 446 

southern Africa in El Niño (La Niña) years, although the exact location of peak 447 

precipitation anomalies is slightly shifted.  When synoptic precipitation patterns are 448 

examined using SOMs, we have found that nodes associated with TTTs in the 449 

southern (northern) part of the domain are observed less (more) often during El Niño 450 

years.  In contrast, nodes associated with TTTs occur more frequently during La Niña 451 

years.  Also, nodes associated with dry conditions over southern Africa appear more 452 

(less) frequently during El Niño (La Niña) years. 453 

Interestingly, the models have better skill in simulating precipitation anomalies 454 

during La Niña years, and this may explain why forecast skills have been found to be 455 

higher during La Niña years (Landman and Beraki 2012).  Because of limitation in the 456 

length of daily precipitation data, we note that there are only two (three) El Niño (La 457 

Niña) events in the composites, and the analysis should be repeated after the 458 

accumulation of observation data. 459 

However, this study is the first to illustrate that the usage of different convection 460 

schemes in an AGCM can have pronounced effects on the simulation of southern 461 

African rainfall in austral summer.  In fact, the study shows that the simulation of upper 462 

level circulation and TTT attributes are sensitive to the choice of cumulus convection 463 

scheme.  We therefore expect that the results presented in this study may shed new 464 
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light on simulation and prediction of the precipitation over the southern Africa region. 465 

 466 
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Figure captions: 671 

 672 

Figure 1: Schematic diagram showing how the SOM is applied. 673 

Figure 2: Mean precipitation (in mm day-1) around the southern African region during 674 

the rainy season (November-February) in (a) GPCP, (b) FrAM_Kuo, (c) 675 

FrAM_Emanuel, and (d) FrAM_Teidtke. 676 

Figure 3: Mean sea level pressure (in hPa) during the rainy season (November-677 

February) in (a) GPCP, (b) FrAM_Kuo, (c) FrAM_Emanuel, and (d) FrAM_Teidtke. 678 

Figure 4: As in Fig. 2, but for monthly climatology of precipitation (in mm day-1) in 679 

January, March, May, July, September, and November. 680 

Figure 5: As in Fig. 4, but for the vertical stability (in K (100 hPa)-1). 681 

Figure 6: As in Fig. 4, but for the vertical velocity (in Pa s-1). 682 

Figure 7: Spatial correlation coefficient of rainfall over 0°-60°E, 45°S-15°S between the 683 

GPCP observation and three versions of FrAM.  All pattern correlation 684 

coefficients are significant at 99% confidence level when tested by the Monte 685 

Carlo method. 686 

Figure 8: Velocity potential (in m2 s-1 as shown in the color bar) and divergent wind (in 687 

m s-1 and its magnitude shown in the vector below the color bar) at 200 hPa in 688 

November for (a) the NCEP/NCAR reanalysis data, (b) FrAM_Kuo, (c) 689 

FrAM_Emanuel, and (d) FrAM_Tiedtke.  690 

Figure 9: SOM array of daily rainfall anomalies (in mm day-1).  Each node represents 691 

a synoptic precipitation pattern over the southern African region. 692 
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Figure 10: Frequency map of the SOM array showing how frequently each 693 

precipitation pattern appears during the rainy season (November-February). 694 

Figure 11: As in Fig. 2, but for percentage of precipitation in the rainy season 695 

(November-February) associated with nodes representing TTTs. 696 

Figure 12: (First row) Frequency map of the SOM array showing how frequently each 697 

precipitation pattern appears from November to February in the observation.  698 

(Second, third, and fourth rows) Model biases in frequency of each precipitation 699 

pattern in FrAM_Kuo, FrAM_Emanuel, and FrAM_Tiedtke, respectively.  700 

Positive (Negative) values signify that the pattern appears more (less) frequently 701 

compared with the observation. 702 

Figure 13: As in Fig. 2, but for the zonal wind shear (200-850 hPa; m s-1) in November. 703 

Figure 14: Correlation coefficients between the observed and simulated precipitation in 704 

the southern African region for November-February for the period of 1982-2008: 705 

(a) FrAM_Kuo, (b) FrAM_Emanuel, and (c) FrAM_Tiedtke. 706 

Figure 15: Equitable threat score of precipitation during November-February of the 707 

period of 1982-2008 for (a) dry and (b) wet conditions. 708 

Figure 16: Normalized time series of Niño-3.4 index in November-February. 709 

Figure 17: Composite of precipitation anomalies (in mm day-1) in (upper panels) El 710 

Niño and (lower panels) La Niña years. 711 

Figure 18: Frequency map of the SOM array showing how frequently each 712 

precipitation pattern appears during El Niño, normal, and La Niña years in the 713 

GPCP observation and three versions of FrAM.  Here, deviations from the 714 
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seasonal mean percentage are shown, and “ps” signifies phase synchronization. 715 

 716 
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Figures 717 

 718 

Figure 1: Schematic diagram showing how the SOM is applied. 719 

 720 



 36 

 721 

 722 

Figure 2: Mean precipitation (in mm day-1) around the southern African region during 723 
the rainy season (November-February) in (a) GPCP, (b) FrAM_Kuo, (c) 724 
FrAM_Emanuel, and (d) FrAM_Teidtke. 725 

 726 
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 727 

 728 
Figure 3: Mean sea level pressure (in hPa) during the rainy season (November-729 

February) in (a) GPCP, (b) FrAM_Kuo, (c) FrAM_Emanuel, and (d) FrAM_Teidtke. 730 

 731 
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 732 

 733 
Figure 4: As in Fig. 2, but for monthly climatology of precipitation (in mm day-1) in 734 

January, March, May, July, September, and November.  735 
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 736 

Figure 5: As in Fig. 4, but for the vertical stability (in K (100 hPa)-1). 737 
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 738 

Figure 6: As in Fig. 4, but for the vertical velocity (in Pa s-1). 739 
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 740 

 741 

 742 

Figure 7: Spatial correlation coefficient of rainfall over 0°-60°E, 45°S-15°S between the 743 
GPCP observation and three versions of FrAM.  All pattern correlation 744 
coefficients are significant at 95% confidence level when tested by the Monte 745 
Carlo method. 746 

 747 
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 748 

 749 
Figure 8: Velocity potential (in m2 s-1 as shown in the color bar) and divergent wind (in 750 

m s-1 and its magnitude shown in the vector below the color bar) at 200 hPa in 751 
November for (a) the NCEP/NCAR reanalysis data, (b) FrAM_Kuo, (c) 752 
FrAM_Emanuel, and (d) FrAM_Tiedtke.  753 
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 754 

 755 

 756 

Figure 9: SOM array of daily rainfall anomalies (in mm day-1).  Each node represents 757 
a synoptic precipitation pattern over the southern African region. 758 

 759 
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 760 

 761 

 762 

Figure 10: Frequency map of the SOM array showing how frequently each 763 
precipitation pattern appears during the rainy season (November-February). 764 

 765 



 45 

 766 

 767 

 768 

Figure 11: As in Fig. 2, but for percentage of precipitation in the rainy season 769 
(November-February) associated with nodes representing TTTs. 770 

 771 
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 772 

 773 

 774 

Figure 12: (First row) Frequency map of the SOM array showing how frequently each 775 
precipitation pattern appears each month from November to February in the 776 
observation.  (Second, third, and fourth rows) Model biases in frequency of each 777 
precipitation pattern in FrAM_Kuo, FrAM_Emanuel, and FrAM_Tiedtke, 778 
respectively.  Positive (Negative) values signify that the pattern appears more 779 
(less) frequently compared with the observation. 780 

 781 
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 783 

 784 

Figure 13: As in Fig. 2, but for the zonal wind shear (200-850 hPa; m s-1) in November. 785 

 786 



 48 

 787 

 788 

 789 

Figure 14: Correlation coefficients between the observed and simulated precipitation in 790 
the southern African region for November-February for the period of 1982-2008: 791 
(a) FrAM_Kuo, (b) FrAM_Emanuel, and (c) FrAM_Tiedtke. 792 

 793 
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 794 

 795 
 796 

Figure 15: Equitable threat score of precipitation during November-February of the 797 
period of 1982-2008 for (a) dry and (b) wet conditions. 798 
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 800 

 801 

 802 

Figure 16: Normalized time series of Niño-3.4 index in November-February. 803 
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 805 

 806 

 807 

Figure 17: Composite of precipitation anomalies (in mm day-1) in (upper panels) El 808 
Niño and (lower panels) La Niña years. 809 
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 812 

 813 

Figure 18: Frequency map of the SOM array showing how frequently each 814 
precipitation pattern appears during El Niño, normal, and La Niña years in the 815 
GPCP observation and three versions of FrAM.  Here, deviations from the 816 
seasonal mean percentage are shown, and “ps” signifies phase synchronization. 817 
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