100
極地
日本極地研究振興会
第51巻第1号／平成27年4月発行
目 次

卷頭言 3 K. Watanabe／Antarctic Research Programs of Asian countries

記 事

アジア諸国の南極観測／渡邉研太郎 3 K. Satou／PANSY —MST/IS Radar Project at Antarctic Syowa Station—

南極昭和基地大型大気レーダープロジェクト／佐藤 薫 17 K. Kusunoki／A letter of polar historian Itiroh Kanô

極地研究家・加納一郎の手紙／楠 宏 26 Y. Yoshida and H. Murayama／Episode of bronze Pod at Syowa Station - Memorial of public donators to support JARE at its beginnings

昭和基地の「壷」／吉田栄夫・村山治太 31 Y. Nogi／The plan of the 56th JARE in 2014-2016

第56次南極地域観測隊の計画／野木義史 36 K. Ishizawa and H. Kanda／Polar news

情報

公益財団法人日本極地研究振興会助成金申請の手引き／事務局 16 Secretariat／Guide to application for Association “Grant-in-aid”

メールアドレス登録のお願い／吉田栄夫 25 H. Murayama／Contents: Polar News from No. 91—to No.100

「極地」総目次 (91〜100号)／村山治太 72 编集委員会・編集後記 79

表紙：ウェッデルアザラシの親子、ウェッデルアザラシは最も海岸に近いところに棲息していて、シャチなどの天敵に襲われることがありなく、そのためか人も恐れないようだ。

裏表紙：ロス海西岸、マクマード露岩地域のマヤース谷に発達する非堆積構造土、地下の永久凍土層の存在を示す。

Front cover: A mother and a pup of Weddell seal near Syowa Station

Back cover: Non-sorted polygons in Miers Valley, McMurdo Sound region
南極昭和基地大型大気レーダープロジェクト（PANSY）

佐藤薫
（東京大学大学院理工系研究科）

1. PANSYのはじまり

2015年2月、ついに南極昭和基地大型大気レーダー、PANSYレーダーの全55群の調整が完了いたしました。記念すべき「極地」第100号にPANSY完成のご報告ができることを大変うれしく思います。ちょっとビックなこのプロジェクトは、京都大学（以下京大）大学院地理学研究科から国立極地研究所（以下極地研）に助教授として着任したばかりの著者が2000年2月に行った研究陣と会で「こんなことできるとは思わないけど」と冗談半分で語った夢が契機となり始まりました。背中を押してくださったのは、江尻全飛研究主幹（当時）です。談話会の後、居室に来ておられ、「できるかもしれない。読者してみましょう、僕がバックアップするから」と話されました。そのとき、大きなプロジェクトは50代前半ぐらいの年齢で始めるのがよいといわれており、またプロジェクトを抱えると論文が書けなくなるともいわれていました。そして、PANSYの実現に必要な数十億円規模の設備費は過去約十年間にすべての分野でほとんど認められておらず、予算獲得は極めて厳しい状況にありました。私はまだ30代後半でしたから、文字通り一生を賭けた、リスクの高い仕事になるのは目に見えました。しかし、こんな話をいただければ人生に何度もないに違いないと考
ことで、風速の鉛直プロファイルを得る装置です。PANSY レーダーの時間分解能は約1分で、風観測装置としては抜群に良く、鉛直分解能も 150m と高いものです。何といってもビームを上に向けることで鉛直風が高精度で求まります。鉛直風は、対流や雲の生成、対流圏分布交換、波による鉛直運動量輸送など、気象学における多くの基本物理過程にかかわるパラメータが、なかなか観測が難しいことも知られています。大型大気レーダーには、これらの大気の物理過程の研究に必要な分解能と精度を持つ鉛直風データが取得できる唯一の測器です。大型大気レーダーによる連続観測を十数年行えば、中緯度並みの精密大気科学が南極を中心に展開できるはずです。PANSY のサイエンスの詳細内容については、パンフレットやホームページ、論文をご参照ください。

3. PANSY レーダーの技術開発

江尻先生のアドバイスは、「南極と宇宙は似ている、一度打ち上げてしまった修理のできない衛星搭載器と同じような考え方で作ればよさろう」というものでした。先生は、初めは部品を極地仕様のものに変え、最適化図を描いて消費電力を落とし、MU レーダーのコピーを昭和基地に設置すればよいと考えていらしたのではなかったかと思います。しかしながら、MU レーダーの消費電力は 230 kW で昭和基地全体を維持するのに必要な電力 200kW を超えるものであり、抜本的な設計変更を行う必要があることが、検討を始めてみるとすぐに明らかになりました。PANSY はこれに対して、E 級アンプ技術の新規導入とアンテナ本数を倍増することによって必要電力の大幅削減を行いました。さらに、アンテナの耐候性の向上と軽量化を図り、冬季の修理を避け

るためアンテナごとに送受信を独立させることにしました。建設期間を短くするために設置工事の徹底的な簡略化を行い、貴重な電力を有効に活用するために電源ケーブルもしできるだけロスのないものを複数本並列にしました。こうして二重三重に冗長性を持たせた大型大気レーダーが出来上がりました。

4. PANSY グループの形成と国内外のコミュニティの理解

プロジェクトの進め方としては、多くの優れたプロジェクトの前例に従い、まず、2002年に研究費基盤 C（企画調査）を獲得して研究集会を開き、国内外の21機関の研究者の参加を得て、技術的な課題や科学的課題を明確にしました。PANSY レーダーの大幅な電源削減をもたらしたE 級アンプはこの時に出てきたアイディアです。また、科学的課題（研究テーマ）はパンフレットにまとめました。パンフレットのPANSY レーダーのイメージ図は MU レーダーの図も手掛けて岡田氏（著者の義兄）に描いてもらいました。

次に、国際コミュニティの理解を得るため、ICSU（国際科学連合）下のIUGG（国際測地学会・地球物理学連合）等の主要学術組織に関係する国際会議で南極 PANSY 構想に関する講演を行い、大型大気レーダー観測の重要性に関する提言を出してもらうよう働きかけました。URSI（国際電波科学連合）やSCAR（国際南極研究科学委員会）からの提言は、それぞれ麻生正彦教授や山内昌教授（以下山内さん）が働きかけてくださいました。この活動を通じて、多くの著名な研究者に励ましをいただきました。もちろん、国内においても気象学会や地球電磁気・地球惑星観測学会や地球惑星科学連合で特別セッションやシンポジウムを催し議
論を深めました。国の科学技術政策とどう調和するかを考え、山内さんと数回にわたる文部科学省の海洋地球課や学術機関関に出向き、PANSYプロジェクトの説明をさせていただきました。このような仕事が比較的やりやすかったのは極地研が文部科学省の旧直轄研だったことが大きいと思います。

5. PANSYレーダーの実現に向けた努力

PANSYの実現には、技術課題の克服に加え、日本の南極観測計画に位置付けられること、また大規模予算を獲得することが必要条件でした。そしてこの三つの条件をほぼ同時に達成しなければなりません。極地研の中ではPANSYは立ち上げ当時から分野を超えて大きな関心を持って迎えられました。プロジェクトは、時にA級プライザード並の逆風にさらされましたが、最終的にやめるかどうかを決めるのは自分達だと半ば聞き直って、検討を断々と進めました。省電力、耐候性、人工数削減等、検討課題は山ほどありました。一方、技術開発や試作のために少なくとも所長裁量経費を使わせていただいたときには、極地研の懸命の努力を感じました。北極圏環境研究センターレ（当時）藤井理行教授からは、水泳寝前のご授業に基づき、大型研究を進めうるうえでの貴重なアドバイスを、折に触れてくれました。私自身も第44次越冬隊に参加し、昭和基地のオペレーションを勉強しました。この時の話は「極地」79号に掲載されていますので、関心のある方はご覧ください。

南極から帰国後1年半ほど経った2005年10月に、私は東京大学大学院理学系研究科に異動しましたが、定年退職された江尻教授の後をつぐでPANSY代表となり、極地研に残った堤さんや京大の星先生らと共にさらに技術開発や現地調査を進めました。2006年にはおよそ1年が経って上手に作られたので、2005年11月に概算要求書を提出しました。しばらくして、PANSYに対する風向きが大きく変わり始めました。まず、2008年11月に第VIII期南極重点研究観測が公募となり、PANSYも応募したところ外部資金（規模が大きく通常の南極観測予算では調達できないので、それ以外の資金）が取得できればという条件付きで採択されたのです。また、日本学術会議においては大型計画のアンケートがなされ、PANSY計画を学術の有る舞台に出すことができました。そしてついにPANSYは2009年4月に補正予算の内定をいただいたのです。その金額を藤井理行所長（当時）は地球の年齢みたいだねとおっしゃっていました。これでPANSYの予算規模がお分かりになるでしょうか？次々と長年の懸案がうまくは、「山が動く」とはまさにこのことだと思います。その後も、自民党から民主党に政権が移るなど強風は続きましたが、幸い政府のPANSYに対する評価が変わることはありませんでした。現副所長で私とは同学年の中村卓史さんが京大から極地研に移られ、PANSYのメンバーに加わられたのもこのころ（2009年4月）です。

6. PANSYの建設

PANSYはもっとも3年計画で建設をする予定でした。3年といえば3年ですが、実質3か月強です。1年目は測量とアンテナ基礎工事、2年目はアンテナ建設とケーブル敷設、3年目は送受信モジュールの装置とシステムの組上げという計画でした。これでも、数人の建設の専門家と数人の研究者によるグループでの作業を想定し練りに練った計画でした。しかし、補正予算という単年度予算となったために、1年
で観測を開始する必要ができました。かなり無茶な話ではあるのです、こうなった以上頑張るしかありません。まず、1年半の観測を、51回の夏に測定をすることにしました。そして、重機の最適化をさらに進めるため、ほぼ全員参加で基礎掘削やケーブルの敷設、アンテナの組立訓練を有料に出て行いました。これと並行して京大地震研究所の読み書きを読んで信楽MU観測所内に国内試験と観測隊の訓練用の小型システム（すみれ、と名付けました）を設置し、様々な試験と観測ソフトウェアの開発を進めました。ソフトウェアは53回観測隊には参加した西村斡司准教授が担当しました。

PANSY建設にあたり、52回観測隊は19人、53回観測隊は22人、54回観測隊は33人にも参加予定の河川水害研究（以下、河川研究）をPANSYグループリーダーとして派遣し、観測隊の協力を得て建設および調整作業を行う作戦にしました。PANSYグループの山川さん、山岸久雄教授はそれぞれ52回、53回観測隊長として南極を行ってくださいました。筆者を含む外のものというわれていますので、覚悟はしていたが、PANSYの建設期間は試験の連続でした。つまり、観測隊の南極に住んでくださいました。白夜のように、日照時間が短い京都市より少ないほどだったのです。それでも基礎を掘り、約1000本のアンテナを立てて全55群のうち3群を用いたファーストデータを取るのに成功しました。ちょうど東日本大震災の直後です。ところが、52回観測隊は、過去数年に比べて積雪が極めて多く、多数のアンテナが埋もれる事態となり、せっかく夏に設置したアンテナを取り去る作業となりました。

そこで、53回観測隊にはアンテナの大半を移設することにしました。その結果アンテナ群は、ある1つの円形から不規則な四つのブロックに分かることになりました。PANSYは一つ一つのアンテナを独立して制御可能にしてあったので、このような離れができないのです。また、PANSYのケーブルは総数約4500本、長さは延べ100kmにもなります。当初、基幹の電源ケーブルは4本を束にして敷設することにしていましたが、最適化をぎりぎりまで頑張った結果、実機作製の時点では3本でも可能な特性となっていたため、アンテナ形状の変更に伴うケーブルの再調達も避けることができました。ややこしい計算だったのですが、卓抜した計算（算数）能力を持つ富川君は短時間で正確な答えを教えてくれました。これによって、ビームの形状は対称ではなくなくなったのですが、アンテナ面が広がることで、ビーム幅が減少するというレーダーの性能としてはうれしいおまけがつきました。もう一つの想定外は、私が東京の総研補佐に任命され、53回に昭和基地に出張できなくなったことです。山内さんからの推薦で、急遽先生に行っていただくことになりました。観測隊初参加でこのような大事業のリーダーとなったわけですから、その苦労は大変なものだっただろうと思います。53回観測隊の天候は悪くありませんでしたが、作業量は52回観測隊に負けてず劣らずであり、さらに、しならせ接
岸断念という非常事態となりました。約30kmにわたる氷上輸送で運べるだけ運んだものの、65％が持ち帰りとなったのです。夏作業期間には生きていた1群を細々と中間圏夏季エコーの観測を続け、越冬に入り4月30日から12群で対流圏、成層圏の連続観測をスタートすることができました。極圏は対流圏界面の高さが低いので、12群規模でも成層圏が見えるのはうれしいことでした。PANSYも12年のときを経てついにレーダーになったのだと感無量でした。データを解析して研究結果をまとめ、PANSY観測の始まった最初の正月、1月1日に最初の論文を投稿しました。そして12群では冬季は対流圏、成層圏しか見えないと思っていましたが、念のため中間圏にもビームを向けようとしました。すると冬季でも弱いながら中間圏からのエコーが見えるのです。感動でした。PANSYの建設は自然に苦しみられましたが、その自然は実に豊かで興味深い対象であることが確信される出来事でした。54次でも接岸断念で85％持ち帰りとなりましたが26群まで拡張し、55次では47群、そしてついに56次では55群全部を立ち上げることができたのです。

PANSYの建設はこれまでの南極観測隊の夏作業とは大きく異なっていました。それは、夏作業における国内との連携です。PANSYの耐候性は理論計算と数年にわたる現地試験で確認してきましたが、実際の作業ではギリギリのところでの判断が必要になることがあります。しかも、観測隊員は大変疲れている。PANSYでは「現場判断」を最低限（できるだけしない）とし、国内対応グループがブレインとなって、確認を行いながら作業を進めました。PANSY建設においては、インターネットが利用可能となっていったことも成功をもたらした重要な要素の一つといえます。

また、電力についても始めてみると面白いい用ができたことがわかりました。PANSYの制御小屋には多くの計算サーバーが設置されていますが、計算サーバーに適した室温を保たなければなりません。ところが、レーダーを止めて暖房するのに必要な電力は、12群観測を行うときに必要なレーダー用いる電力とはほぼ等しく、この時計算サーバー等の屋内機器が発する熱量で室温が保たれることがわかりました。つまり、暖房とPANSYの連続観測という、一石二鳥の南極らしい運用がで
きるのです。専用発電機が稼働していなかった 52 次〜55 次にはこうして連続観測データを取得しました。

PANSY は 55 群観測により初めて大型大気レーダーとしての威力が発揮されます。この本格観測は専用発電機が稼働可能となった 56 次隊の冬季期間に開始されます。燃料もこれまでの観測実績に基づく計算の結果、しらせの接岸が達成されれば十分な量が確保できることがわかりました。

7. 終わりに

今年、2015 年（平成 27 年）2 月の全群観測試験成功に至るまで、PANSY は実は多くの方々の情熱と努力に支えられてきました。それは、私たち科学者だけでなく、観測隊や「しらせ」の方々、研究所や大学の事務職員や技術職員の方々、文部科学省の方々、そして、企業の技術者の方々です。営利を追求すべき日本企業にあって、その技術者の心気意に感謝をしたこともたびたびでした。おひとりひとりの名前を挙げるスペースがないのがとても残念です。そして、PANSY プロジェクトに参加することで多くの優れた若手研究者も育ってきています。PANSY は、時に絶体絶命の危機に陥ることもありましたが、そのたびに再生し、より輝かしい姿（データ）を見せてくれます。PANSY は 58 次から開始される第 IX 期南極観測 6 年計画の重点研究観測に選ばれました。PANSY の本番はこれからです。皆様にまた面白い研究成果を御報告できるよう、これからもしっかりと進めてまいりたいと思っております。

参考文献

Sato, K., M. Tsutsumi, T. Sato, T. Nakamura, A. Saito, Y. Tomikawa, K. Nishimura, M. Kohma, H. Yamagishi and T. Yamano-
PANSY ホームページ URL: http://pansy.ep.s.u-tokyo.ac.jp

PANSY 年表（敬称略）

1999 年度：12 月に佐藤薫が極地研に異動。昭和基地大型大気レーダー構想をセミナーで語る。江尻全機研究幹であると検討を促される。

2000 年度（42 次。年度の夏作業を担当した隊長）：4 月、堤雅基が南極（40 次越冬）から帰国。PANSY グループ結成（佐藤薫、佐藤亨、堤、斎藤昭則、麻生武彦、山内恭、江尻全機）。5 月、佐藤薫、佐藤亨、堤の 3
人が泊りがけで検討し仕様を固める。500 
本 500 kW（MU レーダーの半分の性能）
で MST レーダーとなることを確認。11 月
SPARC GA で構想を発表。ベルュー、ヒカ
マルカレーダー見学。3 月スバルアルヘ。
所長昼食経費で検討。逆風。
2001 年度（43 次）：科研費基盤 C（企画調
査）申請。当時佐藤薫の学生の吉識宗佳が
43 次越冬。設置候補地の地形調査。国際
学術組織での働きかけ。ラジオゾンデによる
重力波集中観測。
2002 年度（44 次）：科研費基盤 C（企画）
が通り国際研究集会開催。E 級アンプを知
る。1000 本 500 kW に拡大（MU レーダー
と同等性能）。これにより実現可能な消費
電力とできる見通しを得る（80 kW）。国際
学術組織での働きかけ。朝日新聞一面トッ
プ記事。Nature 記事。佐藤薫 44 次越冬。
アンテナ環境試験開始。建設期間短縮には
軽さと組立工法の単純化が重要であることを
認識。オゾンゾンデによるオゾンホール
形成期・消滅期の国際共同観測。
2003 年度（45 次）：アンテナ環境試験継続。
5 本の国際学術組織からの提言が出揃う。
2004 年度（46 次）：岩盤深度調査およびアン
テナ設置工法検討（ブロック法、アンカー
法）。
2005 年度（47 次）：建設専門家（秋山譲徳）
を夏隊同行者として派遣。アンテナ設置工
法検討（基礎鋼管法）。測量。岩盤掘削調査。
アンテナ環境試験による強化部位の洗い出し。
実用型高効率送受信装置の環境試験。
積雪調査。設置工法を基礎鋼管法に決定す
る。佐藤薫、東大に異動。
2006 年度（48 次）：支線なしアンテナ環境
試験。アンテナ特性評価。積雪調査。
2007 年度（49 次）：PANSY レーダープロ
トタイプの下部熱圏探査レーダーの製作。
流星レーダーとして科学も目指す。堀夏隊。
昭和基地での同レーダー制御小屋の設置。
積雪調査。
2008 年度（50 次）：堤夏隊。下部熱圏探査
レーダーの設置。ケーブルが輸送中にかすれ
観測断念。第 VIII 期重点観測に選ばれ
る。積雪調査。
2009 年度（51 次）：補正による予算措置。
最終仕様の設定。アンテナケーブル敷設訓
練等。測量専門家（和知知仁）夏隊同行者
派遣。アンテナ設置候補地の最終決定と地
形調査。アンテナ位置マーキング。下部熱
圏探査レーダーを活用した電波干渉最終調
査。51 次越冬隊による PANSY アンテナエ
リアの除雪。
2010 年度（52 次）：掘削機操作調練等。
PANSY グループリーダー堤（越冬隊）。池
田満久越冬隊。夏作用期間記録の無念。
1 月の日照時間は昭和基地史上最短。アン
テナと分配洗成の基礎鋼管計 1100 本の
埋設工事と 908 本のアンテナ設置。観測制
御小屋設置。3 月末、3 群による初データ
取得。両日本大震災。冬には記録的な大雪
のため、越冬中は設置したアンテナを取り
外す作業に終始。
2011 年度（53 次）：雪に埋もれたアンテナ
の大半を丘領域に移設する計画を立てる。
基幹の電源ケーブル配置再計算。PANSY グ
ループリーダー佐藤薫（夏隊）。冨川喜弘が
夏隊、西村耕司、伊藤礼が越冬隊。それぞれ
接岸せず。65% 留りに。52 次で設置した
3 群のうち雪の被害をほとんどのがれた
1 群による極域中間圏夏季エコー（PMSE）
の初観測に成功。継続観測。融雪水の排水
をしながら、アンテナ移設のため 640 箇所
を考慮し、アンテナ（一部は支柱のみ）を移設する大規模作業。
12 群（228 本）にモジュールを取り付け、
4 月末に継続観測開始。
2012 年度（54 次）：PANSY 第一論文投稿
(2013年元旦)。機器調整より連続観測データ取得の優先度を上げる。PANSYグループリーダー冨川喜弘（越冬隊）、橋本大志、小田出一彦越冬隊。らせん接岸せず。85％持ち帰り。53次で移設したアンテナ基礎にアンテナおよびモジュールを設置し14群の調整を終了（計26群）。26群の観測試験成功。積雪の多い箇所を除き、アンテナの支柱のかさ上げを検討。

2013年度(55次)：らせんが2年ぶりに接岸。計47群の設置調整完了。多雪の日数の増加がアンテナ設置上げ、4月より突然原因不明のノイズの出現、11月になりノイズ源がHFレーダーの一部の発振とわかる。PANSY 第1期論文出版。PANSY 第2、第3期論文投稿。第9期JARE重点研究観測に応募、採択。

2014年度(56次)：全55群の調査完了。観測試験成功。PANSY 第2、第3、第4期論文受理。

PANSY建設参加者リスト

<table>
<thead>
<tr>
<th>障次</th>
<th>夏冬</th>
<th>種別</th>
<th>氏名</th>
<th>所属</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>夏</td>
<td>同行者</td>
<td>和知慈仁</td>
<td>ランドサーベイ</td>
</tr>
<tr>
<td>52</td>
<td>冬</td>
<td>隊員</td>
<td>堤雅基*</td>
<td>極地研</td>
</tr>
<tr>
<td>52</td>
<td>冬</td>
<td>隊員</td>
<td>池田満久</td>
<td>三菱電機</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>隊員</td>
<td>中村卓司</td>
<td>極地研</td>
</tr>
<tr>
<td>53</td>
<td>夏</td>
<td>同行者</td>
<td>白石晴生</td>
<td>ランドサーベイ</td>
</tr>
<tr>
<td>53</td>
<td>夏</td>
<td>同行者</td>
<td>平田義彦</td>
<td>鉱研工業</td>
</tr>
<tr>
<td>53</td>
<td>夏</td>
<td>同行者</td>
<td>長田誠</td>
<td>西日本電子</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>同行者</td>
<td>野城佳男</td>
<td>クリエードデザイン</td>
</tr>
<tr>
<td>54</td>
<td>冬</td>
<td>隊員</td>
<td>西村耕司</td>
<td>極地研</td>
</tr>
<tr>
<td>54</td>
<td>冬</td>
<td>隊員</td>
<td>伊藤礼</td>
<td>三菱電機</td>
</tr>
<tr>
<td>54</td>
<td>夏</td>
<td>隊員</td>
<td>佐藤亨*</td>
<td>京大院情報</td>
</tr>
<tr>
<td>54</td>
<td>夏</td>
<td>隊員</td>
<td>冨川喜弘</td>
<td>極地研</td>
</tr>
<tr>
<td>54</td>
<td>夏</td>
<td>同行者</td>
<td>白石晴生</td>
<td>ランドサーベイ</td>
</tr>
<tr>
<td>54</td>
<td>夏</td>
<td>同行者</td>
<td>平田義彦</td>
<td>鉱研工業</td>
</tr>
<tr>
<td>54</td>
<td>夏</td>
<td>同行者</td>
<td>野城佳男</td>
<td>クリエードデザイン</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>同行者</td>
<td>栗原峰仁</td>
<td>クリエードデザイン</td>
</tr>
<tr>
<td>54</td>
<td>夏</td>
<td>同行者</td>
<td>藤田光高</td>
<td>西日本電子</td>
</tr>
<tr>
<td>54</td>
<td>冬</td>
<td>隊員</td>
<td>冨川喜弘*</td>
<td>極地研</td>
</tr>
<tr>
<td>54</td>
<td>冬</td>
<td>隊員</td>
<td>橋本大志</td>
<td>京大院情報</td>
</tr>
<tr>
<td>54</td>
<td>冬</td>
<td>隊員</td>
<td>小田出一彦</td>
<td>三菱電機</td>
</tr>
<tr>
<td>54</td>
<td>夏</td>
<td>隊員</td>
<td>平原大地</td>
<td>JAXA</td>
</tr>
<tr>
<td>54</td>
<td>夏</td>
<td>同行者</td>
<td>土屋進</td>
<td>クリエードデザイン</td>
</tr>
<tr>
<td>54</td>
<td>夏</td>
<td>同行者</td>
<td>栗原峰仁</td>
<td>クリエードデザイン</td>
</tr>
<tr>
<td>54</td>
<td>夏</td>
<td>同行者</td>
<td>長田誠</td>
<td>西日本電子</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>同行者</td>
<td>藤田光高</td>
<td>西日本電子</td>
</tr>
<tr>
<td>55</td>
<td>冬</td>
<td>隊員</td>
<td>増田拓</td>
<td>三菱電機</td>
</tr>
</tbody>
</table>
メールアドレス登録のお願い

平成27年3月

会員の皆様へ

当財団は2014年12月に、財団の広報活動を強化するために、ホームページをリニューアルしました。新しいホームページでは、助成申請、入会、寄付、南極カレンダー購入、講師派遣依頼等の諸手続きがホームページ上で行えるようになっています。また、社会とのコミュニケーションを密にするためにフェイスブックページを設け、メールマガジンを準備中です。つきましては、会員の皆様に最新情報とメールマガジンを送付するために、メールアドレスをお持ちの方は、ご連絡ください。

ご連絡は、ホームページ（http://kyokuchior.jp/）上の「お問い合わせ」か、当財団のメール（japra-kyk@bz01.plala.or.jp）にお送りください。よろしくお願い申し上げます。

公益財団法人 日本極地研究振興会
理事長 吉田栄夫