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ABSTRACT6

The large-scale waves that are known to be trapped around the equator are called7

equatorial waves. The equatorial waves cause mean zonal wind acceleration related to quasi-8

biennial and semiannual oscillations. The interaction between equatorial waves and the9

mean wind has been studied by using the transformed Eulerian-Mean (TEM) equations in10

the meridional cross section. However, to examine the three-dimensional (3D) structure of11

the interaction, the 3D residual mean flow and wave activity flux for the equatorial waves12

are needed. The 3D residual mean flow is expressed as the sum of the Eulerian-mean flow13

and the Stokes drift. The present study derives a formula that is approximately equal to14

the 3D Stokes drift for equatorial waves on the equatorial beta-plane (EQSD). The 3D wave15

activity flux for equatorial waves whose divergence corresponds to the wave forcing is also16

derived using the EQSD. It is shown that the meridionally integrated 3D wave activity flux17

for equatorial waves is proportional to the group velocity of equatorial waves.18
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1. Introduction19

Equatorial waves are atmospheric waves whose amplitude is maximized at the equator20

and decreases exponentially as the distance of the waves from the equator increases. Their21

dispersion relation and spatial structure were studied theoretically by Matsuno (1966). He22

derived eigenmodes of equatorial waves by using a plane-wave assumption in the time and23

zonal directions on the linear shallow-water equation. The equatorial waves that were dis-24

covered by Wallace and Kousky (1968) and Yanai and Maruyama (1966) from radiosonde25

observation were identified as Kelvin waves and Rossby-gravity waves, respectively.26

On the other hand, quasi-biennial and semiannual oscillations (QBO and SAO) of the27

zonal wind exist in the equatorial stratosphere. Previous studies have shown that these oscil-28

lations are driven by atmospheric waves. The relation between the waves and the zonal-mean29

zonal wind can be diagnosed by the transformed Eulerian-Mean (TEM) equations that were30

derived by Andrews and McIntyre (1976, 1978). The residual mean flow is expressed as the31

sum of the Eulerian-mean flow and the Stokes drift under the small amplitude assumption,32

and is approximately equal to the zonal-mean Lagrangian-mean flow when the wave is lin-33

ear, steady, and adiabatic and when no dissipation occurs. The Eliassen-Palm (EP) flux is34

equal to the product of the group velocity and the wave activity density under the Wentzel-35

Kramers-Brillouin (WKB) approximation and is a useful physical quantity for describing the36

wave propagation (Edmon et al. 1980). The residual mean flow and the zonal-mean zonal37

wind acceleration are related to the divergence of EP flux in the zonal momentum equation.38

When there are no critical levels, the divergence of the EP flux is zero for linear, steady, and39

conservative waves. Under such conditions, the waves neither drive the residual mean flow40

nor accelerate the zonal-mean zonal wind. This is known as the non-acceleration theorem41

(Eliassen and Palm 1961; Charney and Drazin 1961). In studies using the TEM equations42

and equatorial wave theory, it was shown that the QBO is mainly driven by gravity waves,43

equatorial Kelvin waves, and Rossby-gravity waves (e.g., Sato and Dunkerton 1997; Haynes44

1998; Baldwin et al. 2001), and it is recognized that the SAO is mainly driven by gravity45
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waves, equatorial Kelvin waves and extratropical Rossby waves (e.g., Hirota 1980, Holton46

and Wehrbein 1980, Hitchman and Leovy 1988, Sassi and Garcia 1997, Antonita et al. 2007).47

Kawatani et al. (2010) recently investigated the zonal variation of wave forcing associated48

with the equatorial Kelvin waves and inertia-gravity waves using the 3D wave activity flux49

derived by Miyahara (2006). They showed that this variation in the stratosphere results from50

zonal variation of the wave sources and from the vertically sheared zonal winds associated51

with the Walker circulation, depending on the phase of the QBO.52

However, it is not clear whether this 3D wave activity flux can describe the equatorial53

Kelvin waves correctly because this flux is only applicable to inertia-gravity waves, not to54

equatorial waves. Although Kinoshita and Sato (2013a,b) newly formulated the 3D wave55

activity flux on the primitive equations, their formulae are not applicable in the equator56

region. The present study formulates the 3D residual mean flow and wave activity flux57

applicable to equatorial waves and shows that these formulae are applicable to the equatorial58

Kelvin waves.59

The paper is arranged as follows. In section 2, the 3D Stokes drift (EQSD) is derived from60

its definition for the equatorial beta-plane equations. The 3D wave activity flux for equatorial61

waves (3D-EQW-flux) is formulated by using the EQSD in section 3. It is shown that the62

3D-EQW-flux divergence corresponds to the equatorial wave forcing to the mean flow. It is63

also shown that the meridional integral of the 3D-EQW-flux accords with a product of the64

group velocity and the meridional integral of the wave activity density for equatorial waves.65

Moreover, we investigate the 3D wave-energy equation for equatorial waves. A summary66

and concluding remarks are given in section 4.67

3



2. The time-mean 3D Stokes drift applicable to equa-68

torial waves69

When small-amplitude perturbations in the slowly varying background horizontal flow70

and weak background wind shear are assumed, the perturbation equations on the equatorial71

beta-plane are given as follows.72

D̄u′ − βyv′ + Φ′
x = 0, (2.1a)

D̄v′ + βyu′ + Φ′
y = 0, (2.1b)

u′
x + v′y + ρ−1

0 (ρ0w
′)z = 0, (2.1c)

D̄Φ′
z +N2w′ = 0, (2.1d)

and73

D̄ ≡ ∂

∂t
+ ū

∂

∂x
+ v̄

∂

∂y
, (2.1e)

where z is the log-pressure height, u, v, w, are zonal, meridional, and vertical velocities,74

respectively, ρ0 is the basic density, Φ is the geopotential, N2 is the buoyancy frequency75

squared, which expresses static stability, β ≡ 2Ωa−1 is the beta effect, Ω is the earth’s rota-76

tion rate, a is the mean radius of the earth, the suffixes x, y, z denote the partial derivatives,77

and we assume that the time-mean vertical velocity, and the nonconservative and diabatic78

terms are negligible. The over bar (¯) and the prime (′) express the time mean and its79

deviation, respectively. For a perturbation, a form of plane wave is considered;80

A′ = Â(y)ez/2H exp[i(kx+mz − ωt)], (2.2a)

where A′ is the arbitrary perturbation, H is the scale height, k,m are zonal and vertical81

wavenumbers, respectively, and ω is the ground-based angular frequency. It should be noted82

that the amplitudes of perturbations are constant in the time scale of wave phase change83

and vary in the time scale for the background state. Basic density is expressed as84

ρ0 = ρs exp(−z/H), (2.2b)
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where ρs is a surface density. The zonal, meridional, and vertical parcel displacements85

(ξ′, η′, ζ ′) satisfy the following relations as86

D̄ξ′ = u′, D̄η′ = v′, D̄ζ ′ = w′. (2.3)

The time-mean Stokes drift is given in the following using the parcel displacements (2.3) and87

perturbation wind velocities.88

ūS = (ξ′u′)x + (η′u′)y + ρ−1
0 (ρ0ζ ′u′)z = (η′u′)y + ρ−1

0 (ρ0ζ ′u′)z, (2.4a)

v̄S = (ξ′v′)x + (η′v′)y + ρ−1
0 (ρ0ζ ′v′)z = −(η′u′)x + ρ−1

0 (ρ0ζ ′v′)z, (2.4b)

and89

w̄S = (ξ′w′)x + (η′w′)y + ρ−1
0 (ρ0ζ ′w′)z = −(ζ ′u′)x − (ζ ′v′)y. (2.4c)

Here, it should be noted that the deformations on the second equal sign of each equation are90

made by using the relations (ξ′u′) = (η′v′) = (ζ ′w′) = 0, (ξ′v′) = −(η′u′), (ξ′w′) = −(ζ ′u′),91

and (η′w′) = −(ζ ′v′) under the assumption that the time-mean wind shear is small.92

In the next section, the EQSD for equatorial Kelvin waves, Rossby-gravity waves, and93

other-types of equatorial waves are formulated from the definition (2.4).94

a. The 3D Stokes drift for equatorial Kelvin waves95

For equatorial Kelvin waves, the meridional component of perturbation wind velocity and96

that of parcel displacement vanish. Thus, EQSD has only the zonal and vertical components.97

When (2.2) is substituted into (2.1d) and (2.3), the vertical parcel displacement ζ ′ is written98

in terms of Φ′ as99

ζ ′ = −Φ′
z

N2
= −(im+ 1/2H)

N2
Φ′. (2.5)

Using (2.5) enables ζ ′u′ to be expressed as100

ζ ′u′ = −u′Φ′
z

N2
. (2.6)
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Thus, EQSD for the equatorial Kelvin wave is formulated in the following.101

ūS
(Kl) = − 1

ρ0

(

ρ0u′Φ′
z

N2

)

z

, (2.7a)

and102

w̄S
(Kl) =

(

u′Φ′
z

N2

)

x

, (2.7b)

where the subscript (Kl) is used to distinguish other equatorial waves.103

Next, the difference between ūS
(Kl) and other 3D Stokes drifts is examined in terms of104

S ≡ 1
2

(

u′2 + v′2 − Φ′2
z

N2

)

, and S(p) ≡ 1
2

(

u′2 + v′2 − u′Φ′

y

f
+ v′Φ′

x

f

)

(Kinoshita and Sato 2013a,b).105

While the term S becomes equal to fu′η′ and is included in 3D Stokes drift for inertia-106

gravity waves, the term S(p) becomes equal to fu′η′ and is included in the one applicable to107

both Rossby waves and gravity waves. Note that η′ = −iω̂−1v′ becomes equal to zero for108

equatorial Kelvin waves. From zonal momentum, continuity, and thermodynamic equations,109

a polarization and dispersion relations for equatorial Kelvin waves are expressed as follows110

(Andrews et al. 1987).111

u′ =
k

ω̂
Φ′, (2.8)

ω̂2 = N2k2/m̃2, (2.9)

where we use D̄ = −iω̂ and assume that ω̂ is independent of the latitude. From zonal and112

meridional momentum equation, the geopotential of equatorial Kelvin waves is expressed as113

Φ′ = Φ̂0e
z/2H exp(−βky2/2ω̂) exp[i(kx+mz − ωt)], (2.10)

where Φ̂0 is constant. Using (2.8) and (2.10), the term S is written in terms of Φ′ as114

S =
1

2

(

u′2 − Φ′2
z

N2

)

=
1

2

(

k2

ω̂2
− m̃2

N2

)

Φ′2 = 0. (2.11)

Similarly, the term S(p) becomes115

S(p) =
1

2

(

u′2 −
u′Φ′

y

βy

)

=
1

2

(

k2

ω̂2
+

βk2y

ω̂2βy

)

Φ′2 =
k2

ω̂2
Φ′2. (2.12)
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Thus, 3D Stoke drift for equatorial Kelvin waves is equal to that applicable only to inertia-116

gravity waves (Kinoshita et al. 2010), not equal to that derived by Kinoshita and Sato117

(2013a,b).118

b. The 3D Stokes drift for other types of equatorial waves119

For waves having non-zero meridional components of perturbation wind velocity, slightly120

complex manipulation is needed to relate to the perturbation meridional velocity and other121

perturbation physical quantities. The dispersion relation for equatorial waves and the solu-122

tion for v̂(y) are expressed as follows.123

m̃2ω̂2

N2
− k2 − kβ

ω̂
= (2n+ 1)

β|m̃|
N

, (2.13a)

124

v̂ = v̂0 exp (−Y 2/2)Hn(Y ), (2.13b)

and125

Y ≡
√

β|m̃|
N

y, (2.13c)

where m̃2 = m2+1/4H2, Hn(Y ) are the Hermite polynomials and v̂0 is constant. Substituting126

(2.13b) into (2.1) and using the identities dHn(Y )/dY = 2nHn−1(Y ), andHn+1 = 2Y Hn(Y )−127

2nHn−1(Y ) make it possible to show that128

û = iv̂0 exp (−Y 2/2)
√

β|m̃|N
(

1/2Hn+1(Y )

|m̃|ω̂ −Nk
+

nHn−1(Y )

|m̃|ω̂ +Nk

)

, (2.14a)

and129

Φ̂ = iv̂0 exp (−Y 2/2)

√

βN3

|m̃|

(

1/2Hn+1(Y )

|m̃|ω̂ −Nk
− nHn−1(Y )

|m̃|ω̂ +Nk

)

, (2.14b)

(Andrews et al. 1987). It is noted that the latitudinal scale of the background fields is larger130

than an equatorial radius of deformation
√

N
β|m̃|

. First, by using (2.3), (2.14a) and (2.13b),131

η′u′ is expressed in terms of v̂0 as follows.132

η′u′ =
v̂20
2
exp (−Y 2)

√

β|m̃|N
ω̂

(

1/2Hn+1(Y )

|m̃|ω̂ −Nk
+

nHn−1(Y )

|m̃|ω̂ +Nk

)

Hn(Y ). (2.15)
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Similarly, 1
2
u′2, 1

2
v′2, and a potential energy are written in the following.133

1

2
u′2 =

v̂20
4
exp (−Y 2)β|m̃|N

(

1/2Hn+1(Y )

|m̃|ω̂ −Nk
+

nHn−1(Y )

|m̃|ω̂ +Nk

)2

, (2.16a)

1

2
v′2 =

v̂20
4
exp (−Y 2)H2

n(Y ), (2.16b)

and134

1

2

Φ′2
z

N2
=

v̂20
4
exp (−Y 2)β|m̃|N

(

1/2Hn+1(Y )

|m̃|ω̂ −Nk
− nHn−1(Y )

|m̃|ω̂ +Nk

)2

. (2.16c)

The meridional derivative of the difference between (2.16a) and (2.16c), and the derivative135

of (2.16b) are respectively expressed as136

d

dy

1

2

(

u′2 − Φ′2
z

N2

)

=

√

β|m̃|
N

β|m̃|Nv̂20
d

dY

(

exp (−Y 2)

4

2nHn+1(Y )Hn−1(Y )

|m̃|2ω̂2 −N2k2

)

=

√

β|m̃|
N

β|m̃|Nv̂20 exp (−Y 2)

× n(n + 1)Hn(Y )Hn−1(Y )− 1
2
nHn+1(Y )Hn(Y )

|m̃|2ω̂2 −N2k2
, (2.17a)

and137

d

dy

1

2
v′2 =

√

β|m̃|
N

v̂20
d

dY

(

exp (−Y 2)

4
H2

n(Y )

)

=

√

β|m̃|
N

v̂20
exp (−Y 2)

2

(

−Y H2
n(Y )2 + 2nHn(Y )Hn−1(Y )

)

=

√

β|m̃|
N

v̂20
exp (−Y 2)

2

×
(

−1

2
Hn+1(Y )Hn(Y ) + nHn(Y )Hn−1(Y )

)

. (2.17b)
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Hereafter, the notation (Y ) is omitted from Hn(Y ). From the difference between (2.17b)138

and (2.17a), the following relation is obtained.139

d

dy

1

2

(

u′2 − v′2 − Φ′2
z

N2

)

=

√

β|m̃|
N

v̂20e
−Y 2

×
(

β|m̃|N n(n+ 1)HnHn−1 − 1
2
nHn+1Hn

|m̃|2ω̂2 −N2k2
+

1

4
HnHn+1 −

n

2
HnHn−1

)

=

√

β|m̃|
N

v̂20e
−Y 2

{

[−2nβ|m̃|N + βkN2ω̂−1 + (2n+ 1)β|m̃|N ]Hn+1Hn

4(|m̃|2ω̂2 −N2k2)

}

+

√

β|m̃|
N

v̂20e
−Y 2

({4n(n + 1)β|m̃|N − 2n[βkN2ω̂−1 + (2n + 1)β|m̃|N ]}HnHn−1

4(|m̃|2ω̂2 −N2k2)

)

=
v̂20e

−Y 2

2

β
√

β|m̃|N
ω̂

( 1
2
Hn+1

|m̃|ω̂ −Nk
+

nHn−1

|m̃|ω̂ +Nk

)

Hn = βu′η′. (2.18)

Next, ζ ′u′ and ζ ′v′ are deformed in the same way as (2.6)140

ζ ′u′ = −u′Φ′
z

N2
, ζ ′v′ = −v′Φ′

z

N2
. (2.19)

Thus, the 3D Stokes drift for equatorial waves (EQSD) is formulated as follows.141

ūS
(EQ) =

[

1

β

∂

∂y

1

2

(

u′2 − v′2 − Φ′2
z

N2

)]

y

− 1

ρ0

(

ρ0u′Φ′
z

N2

)

z

, (2.20a)

v̄S(EQ) = −
[

1

β

∂

∂y

1

2

(

u′2 − v′2 − Φ′2
z

N2

)]

x

− 1

ρ0

(

ρ0v′Φ′
z

N2

)

z

, (2.20b)

and142

w̄S
(EQ) =

(

u′Φ′
z

N2

)

x

+

(

v′Φ′
z

N2

)

y

. (2.20c)

It is important that the EQSD (2.20) is also applicable to the Kelvin waves (n=-1) since143

u′2 = Φ′2
z /N

2 and v′2 = 0, and hence η′u′ = 0. Thus, the EQSD (2.20) can be used144

for all types of equatorial waves. It should be noted that the advantage of EQSD (2.20)145

is to be derived without including parcel displacements which are hardly observed and to146

be composed of eddy covariances. This means that the EQSD is applicable to not only147

monochromatic waves but also all equatorially confined perturbations that are expressed148

with a superposition of sinusoidal waves.149
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3. A formulation of the 3D wave activity flux for equa-150

torial waves151

a. The 3D residual mean flow and wave activity flux152

The time-mean zonal momentum equation on the equatorial beta-plane is given by153

ūt + ūxū+ (ūy − βy)v̄ + ūzw̄ = −(u′2)x − (u′v′)y − ρ−1
0 (ρ0u′w′)z. (3.1)

By substituting (2.20) into (3.1) and using the assumption that the background wind shear154

is negligible, we obtain155

ūt − βyv∗(EQ) = −ρ−1
0 (∇ · F(EQ)

1 ), (3.2)

where v∗(EQ) = v̄+ v̄S(EQ) is the meridional component of the 3D residual mean flow associated156

with forcing by equatorial waves, and F
(EQ)
1 = (F

(EQ)
11 , F

(EQ)
12 , F

(EQ)
13 ) is the 3D wave activity157

flux for equatorial waves:158

F
(EQ)
11 = ρ0

{

u′2 − y

2

∂

∂y

(

u′2 − v2 − Φ′2
z

N2

)}

, (3.3a)

F
(EQ)
12 = ρ0(u′v′) = 0, (3.3b)

and159

F
(EQ)
13 = ρ0

(

u′w′ − βy
v′Φ′

z

N2

)

. (3.3c)

It should be noted that (3.3b) vanishes since u′ and v′ are out of phase by 90 degrees. This160

3D wave activity flux (3.3) is related to the wave forcing for the time-mean flow. In the161

next section, the relation between the 3D wave activity flux (3.3) and the group velocity of162

equatorial waves is examined.163

b. The relation between 3D wave activity flux and group velocity164

In the 2D TEM equation system, the meridionally integrated EP flux is equal to a product165

of the vertical group velocity and the meridionally integrated wave activity density (Andrews166
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et al. 1987). It can be shown that the vertical component of 3D wave activity flux (3.3c)167

satisfies this relation, as in the following.168

Using (2.1d) and (2.14) enables us to write u′w′ included in (3.3c) in terms of v̂0 as169

u′w′ = (−mω̂β)
v̂0e

−Y 2

2

{

(1
2
Hn+1)

2

(|m̃|ω̂ −Nk)2
− (nHn−1)

2

(|m̃|ω̂ +Nk)2

}

. (3.4)

The meridional integral of (3.4) is obtained by using the dispersion relation of equatorial170

waves (2.13a) and
∫∞

−∞
Hm(Y )Hn(Y ) exp (−Y 2)dY = δm,n2

nn!
√
π:171

∫ ∞

−∞

u′w′dy =

√

N

β|m̃|
v̂20
2
(−mω̂β)2n−1n!

√
π

[

n+ 1

(|m̃|ω̂ −Nk)2
− n

(|m̃|ω̂ +Nk)2

]

=

√

N

β|m̃|
v̂20
2
(−mω̂β)2n−1n!

√
π

2ω̂k + β

|m̃|2ω̂2 −N2k2
. (3.5)

Similarly, −βy v′Φ′

z

N2 and its meridional integral are given in the following.172

−βy
v′Φ′

z

N2
=

mβ

|m̃|
v̂20e

−Y 2

2

√

β|m̃|
N

y

( 1
2
Hn+1

|m̃|ω̂ −Nk
− nHn−1

|m̃|ω̂ −Nk

)

Hn

=
mβ

|m̃|
v̂20e

−Y 2

2

[

(1
2
Hn+1)

2

|m̃|ω̂ −Nk
− (nHn−1)

2

|m̃|ω̂ +Nk
+

NknHn+1Hn−1

|m̃|2ω̂2 −N2k2

]

, (3.6a)

and173

∫ ∞

−∞

−βy
v′Φ′

z

N2
dy =

√

N

β|m̃|
v̂20
2

(

mβ

|m̃|

)

2n−1n!
√
π

(

n+ 1

|m̃|ω̂ −Nk
− n

|m̃|ω̂ +Nk

)

=

√

N

β|m̃|
v̂20
2

(

mβ

|m̃|

)

2n−1n!
√
π
(2n+ 1)Nk + |m̃|ω̂
|m̃|2ω̂2 −N2k2

}. (3.6b)

Thus,174

∫ ∞

−∞

F
(EQ)
13 dy = ρ0

√

N

β|m̃|
v̂20
2
2n−1n!

√
π
−2ω̂2km+ (2n+ 1)βNkm|m̃|−1

|m̃|2ω̂2 −N2k2
. (3.7)

On the other hand, the wave activity density and its meridional integral are written as175

E(EQ)

Ĉ(x)

= ρ0
v̂20e

−Y 2

2

k

ω̂

{

β|m̃|N
[

(1
2
Hn+1)

2

(|m̃|ω̂ −Nk)2
+

(nHn−1)
2

(|m̃|ω̂ +Nk)2

]

+
H2

n

2

}

, (3.8a)
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and176

∫ ∞

−∞

E(EQ)

Ĉ(x)

dy = ρ0

√

N

β|m̃|
β|m̃|Nk

ω̂

v̂20
2
2n−1n!

√
π

×
[

n+ 1

(|m̃|ω̂ −Nk)2
+

n

(|m̃|ω̂ +Nk)2
+

1

β|m̃|N

]

= ρ0

√

N

β|m̃| ω̂
v̂20
2
2n−1n!

√
π
k

ω̂

2|m̃|2ω̂2 + ω̂−1N2kβ

|m̃|2ω̂2 −N2k2
, (3.8b)

where E(EQ) ≡ ρ0
2

(

u′2 + v′2 + Φ′2
z

N2

)

. The derivation of (3.5), (3.6b) and (3.8b) is given in the177

Appendix. The zonal and vertical group velocities of equatorial waves are expressed as178

Ĉ
(EQ)
(gx) =

2ω̂N2k +N2β

2|m̃|2ω̂2 + ω̂−1N2kβ
, (3.9a)

and179

Ĉ
(EQ)
(gz) =

−2ω̂3m+ (2n+ 1)ω̂Nβ

2|m̃|2ω̂2 + ω̂−1N2kβ
. (3.9b)

Dividing (3.7) by (3.8b) yields180

∫∞

−∞
F

(EQ)
13 dy

∫∞

−∞
E(EQ)

Ĉ(x)
dy

=
k

ω̂

−2ω̂2km+ (2n+ 1)βNkm|m̃|−1

2|m̃|2ω̂2 + ω̂−1N2kβ
= Ĉ

(EQ)
(gz) . (3.10)

Thus, the meridional integral of the vertical component of 3D wave activity flux for equatorial181

waves (3.3c) is proportional to the vertical group velocity.182

Next, it is shown that the meridional integral of the zonal component of 3D wave activity183

flux for equatorial waves (3.3a) accords with a product of the zonal group velocity and184

the meridionally integrated wave activity density. Using (2.13b) and (2.14), F
(EQ)
11 and its185

12



meridional integral are written in terms of v̂0 as186

F
(EQ)
11 = ρ0

v̂20e
−Y 2

2
β|m̃|N

( 1
2
Hn+1

|m̃|ω̂ −Nk
+

nHn−1

|m̃|ω̂ +Nk

)2

− ρ0
v̂20e

−Y 2

2

βy
√

β|m̃|N
ω̂

( 1
2
Hn+1

|m̃|ω̂ −Nk
+

nHn−1

|m̃|ω̂ +Nk

)

Hn

= ρ0
v̂20e

−Y 2

2

βN

ω̂
|m̃|ω̂

( 1
2
Hn+1

|m̃|ω̂ −Nk
+

nHn−1

|m̃|ω̂ +Nk

)2

− ρ0
v̂20e

−Y 2

2

βN

ω̂

( 1
2
Hn+1

|m̃|ω̂ −Nk
+

nHn−1

|m̃|ω̂ +Nk

)

(
1

2
Hn+1 + nHn−1)

= ρ0
v̂20e

−Y 2

2

βN

ω̂

×
[

(|m̃|ω̂ − |m̃|ω̂ +Nk)(1
2
Hn+1)

2

(|m̃|ω̂ −Nk)2
+

(|m̃|ω̂ − |m̃|ω̂)Hn+1Hn−1

|m̃|2ω̂2 −N2k2

]

+ ρ0
v̂20e

−Y 2

2

βN

ω̂

(|m̃|ω̂ − |m̃|ω̂ +Nk)(nHn−1)
2

(|m̃|ω̂ +Nk)2

= ρ0
v̂20e

−Y 2

2

βN2k

ω̂

[ 1
4
H2

n+1

(|m̃|ω̂ −Nk)2
− n2H2

n−1

(|m̃|ω̂ +Nk)2

]

. (3.11a)

and187

∫ ∞

−∞

F
(EQ)
11 dy = ρ0

√

N

β|m̃|
v̂20
2
2n−1n!

√
π
βN2k

ω̂

[

n + 1

(|m̃|ω̂ −Nk)2
− n

(|m̃|ω̂ +Nk)2

]

= ρ0

√

N

β|m̃|
v̂20
2
2n−1n!

√
π
k

ω̂

2ω̂N2k +N2β

|m̃|2ω̂2 −N2k2
. (3.11b)

Dividing (3.11) by (3.8b) yields188

∫∞

−∞
F

(EQ)
11 dy

∫∞

−∞
E(EQ)

Ĉ(x)
dy

=
2ω̂N2k +N2β

2|m̃|2ω̂2 + ω̂−1N2kβ
= Ĉ

(EQ)
(gx) . (3.12)

These results indicate that the 3D wave activity flux (3.3) can describe the propagation of189

equatorial waves. It should be noted that the terms proportional to the group velocities are190

not the 3D wave activity flux (3.3) but its meridional integral. This is similar to the case of191

EP flux for equatorial waves.192
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c. The wave-energy equation for equatorial waves193

This section examines how the 3D wave activity flux for equatorial waves is related to194

the wave activity density after the wave-energy equation is derived. In this derivation, it is195

assumed that the time-mean wind shear is negligible.196

First, taking u′×(2.1a)+v′×(2.1b)+Φ′
z/N

2×(2.1d) and using the time mean yield197

D̄E(EQ) + ρ−1
0 (∇ · ρ0u′Φ′) = 0. (3.13)

This equation (3.13) is regarded as the 3D wave-energy equation for equatorial waves. Note198

that v′Φ′ vanishes since v′ and Φ′ are out of phase by 90 degrees.199

Next, by using (2.13b) and (2.14), u′Φ′ can be written in terms of v̂0 as200

u′Φ′ = ρ0
v̂20e

−Y 2

2
βN2

[ 1
4
H2

n+1

(|m̃|ω̂ −Nk)2
− n2H2

n−1

(|m̃|ω̂ +Nk)2

]

. (3.14)

From (3.11a) and (3.14)201

F
(EQ)
11 = ρ0

ω̂

k
u′Φ′. (3.15)

Similarly,202

F
(EQ)
13 = ρ0

ω̂

k
w′Φ′. (3.16)

From (3.13), (3.15), and (3.16),203

D̄
E(EQ)

Ĉ(x)

+ ρ−1
0 (∇ · F(EQ)

1 ) = 0. (3.17)

This equation (3.17) is regarded as the generalized Eliassen-Palm relation for equatorial204

waves under the slowly varying time-mean flow assumption. Note that the equations (3.2)205

and (3.17) express the wave-mean flow interaction as is consistent with equations (3.5a),206

(5.5a) and (5.7) in Andrews and McIntyre (1976). It should be noted that these relations207

(3.13) and (3.17) are obtained without using the meridional integral, unlike the results of208

section 3b.209
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4. Concluding remarks210

In this study, the 3D Stokes drift was formulated from its definition for equatorial beta-211

plane equations (EQSD) when the slowly varying background field and small amplitude212

perturbations are assumed. The EQSD is applicable to all equatorial waves. The 3D wave213

activity flux (3D EQW-flux) was formulated by substituting the EQSD into the time-mean214

zonal momentum equation. These expressions are derived using the time mean and are phase215

independent.216

Next, it was shown that the latitudinal integral of 3D EQW-flux accords with a product217

of the group velocity and the latitudinally integrated wave activity density in both zonal and218

vertical directions. This is an extension of the relation for the Eliassen-Palm flux on the 2D219

TEM equations. The present study also derived the 3D wave-energy equation for equatorial220

waves.221

As it is shown that ūS
(Kl) becomes equal to the 3D Stokes drift for gravity waves in222

section 2.a, we compare F
(EQ)
11 and other 3D wave activity flux. The result shows that the223

meridional integral of F
(EQ)
11 is equal to that of 3D wave activity flux applicable to inertia-224

gravity waves (Miyahara 2006; Kinoshita et al. 2010) ρ0
2

(

u′2 − v′2 + Φ′2
z

N2

)

. The detail is225

written in Appendix.226

The EQSD and 3D EQW-flux are partly different from the 3D Stokes drift and wave227

activity flux that are applicable to both gravity waves and Rossby waves (Kinoshita and228

Sato 2013a,b). The difference is due to assumptions of waves. Kinoshita and Sato (2013a,b)229

assumes waves having meridional wavenumbers, and the term u′η′ is reduced to230

1
2f

(

u′2 + v′2 − u′Φ′

y

f
+ v′Φ′

x

f

)

. On the other hand, this study assumes waves whose amplitude231

is damped in the meridional direction, and the term u′η′ is reduced to 1
β

∂
∂y

1
2

(

u′2 − v′2 − Φ′2
z

N2

)

.232

Similar manipulations may be needed for a case of tidal waves whose meridional structures233

have some nodes. Thus, the 3D TEM equations applicable to tidal waves need to be derived.234
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APPENDIX A242

Derivation of (3.5), (3.6b), and (3.8b)243

The deformation of the first line of (3.5) is made by using (2.13c) and244

∫∞

−∞
Hm(Y )Hn(Y ) exp (−Y 2)dY = δm,n2

nn!
√
π:245

∫∞

−∞
u′w′dy

=

√

N

β|m̃|
v̂20
2
(−mω̂β)

∫ ∞

−∞

{ 1
4
H2

n+1

(|m̃|ω̂ −Nk)2
− n2H2

n−1

(|m̃|ω̂ +Nk)2

}

e−Y 2

dY

=

√

N

β|m̃|
v̂20
2
(−mω̂β)

{

2n−1(n+ 1)!

(|m̃|ω̂ −Nk)2
− 2n−1n× n!

(|m̃|ω̂ +Nk)2

}√
π

=

√

N

β|m̃|
v̂20
2
(−mω̂β)2n−1n!

√
π

{

n + 1

(|m̃|ω̂ −Nk)2
− n

(|m̃|ω̂ +Nk)2

}

. (A1)

The deformation of the first line of (3.6b) and from the first to the second line of (3.8b) are246

also made in a similar way.247

Next, by using the dispersion relation of equatorial waves (2.13a), the part n+1
(|m̃|ω̂−Nk)2

−248

n
(|m̃|ω̂+Nk)2

included in (3.5) can be expressed as follows.249

n+ 1

(|m̃|ω̂ −Nk)2
− n

(|m̃|ω̂ +Nk)2

=
4n|m̃|ω̂Nk + (|m̃|ω̂ +Nk)2

(|m̃|2ω̂2 −N2k2)2

=
4n|m̃|ω̂Nk + (|m̃|ω̂ +Nk)2 + 2|m̃|ω̂Nk − 2|m̃|ω̂Nk

(|m̃|2ω̂2 −N2k2)2

=
2|m̃|ω̂Nk(2n + 1) + |m̃|2ω̂2 +N2k2

(|m̃|2ω̂2 −N2k2)2

=
2|m̃|ω̂Nk

(

|m̃|ω̂2

βN
− Nk2

β|m̃|
− Nk

|m̃|ω̂

)

+ |m̃|2ω̂2 +N2k2

(|m̃|2ω̂2 −N2k2)2

=
2ω̂kβ−1(|m̃|2ω̂2 −N2k2)− 2N2k2 + |m̃|2ω̂2 +N2k2

(|m̃|2ω̂2 −N2k2)2

=
2ω̂kβ−1 + 1

(|m̃|2ω̂2 −N2k2)
. (A2)

Similarly, the parts n+1
|m̃|ω̂−Nk

− n
|m̃|ω̂+Nk

in (3.6b), and n+1
(|m̃|ω̂−Nk)2

+ n
(|m̃|ω̂+Nk)2

+ 1
β|m̃|N

in (3.8b)250
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are reduced in the following.251

n+ 1

|m̃|ω̂ −Nk
− n

|m̃|ω̂ +Nk
=

(|m̃|ω̂ +Nk)(n + 1)− (|m̃|ω̂ −Nk)n

|m̃|2ω̂2 −N2k2

=
(2n+ 1)Nk + |m̃|ω̂
|m̃|2ω̂2 −N2k2

, (A3a)

and252

n+1
(|m̃|ω̂−Nk)2

+
n

(|m̃|ω̂ +Nk)2
+

1

β|m̃|N

=
2(|m̃|2ω̂2 +N2k2)n+ (|m̃|ω̂ +Nk)2 + (|m̃|2ω̂2−N2k2)2

β|m̃|N

(|m̃|2ω̂2 −N2k2)2

=
(|m̃|2ω̂2 +N2k2)(2n+ 1)− |m̃|2ω̂2 −N2k2 + (|m̃|ω̂ +Nk)2

(|m̃|2ω̂2 −N2k2)2

+
(|m̃|2ω̂2 −N2k2){kω̂−1βN2 + (2n+ 1)β|m̃|N}

(β|m̃|N)(|m̃|2ω̂2 −N2k2)2

=
2|m̃|2ω̂2(2n+ 1) + 2|m̃|ω̂Nk + (|m̃|2ω̂2−N2k2)βN2k

β|m̃|Nω̂

(|m̃|2ω̂2 −N2k2)2

=
(|m̃|2ω̂2 −N2k2)(2|m̃|2ω̂2 + kω̂−1βN2)

(β|m̃|N)(|m̃|2ω̂2 −N2k2)2

=
N

β|m̃|
2|m̃|2ω̂2N−2 + kω̂−1β

|m̃|2ω̂2 −N2k2
. (A3b)

APPENDIX B253

Meridional integral of 3D wave activity flux applicable254

to inertia-gravity waves255

The meridional integral of ρ0
2

(

u′2 − v′2 + Φ′2
z

N2

)

is expressed as256

∫ ∞

−∞

ρ0
2

(

u′2 − v′2 +
Φ′2

z

N2

)

dy

= ρ0

√

N

β|m̃|
v̂20
2
2n−1n!

√
πβ|m̃|N

[

n+ 1

(|m̃|ω̂ −Nk)2
+

n

(|m̃|ω̂ +Nk)2
− 1

β|m̃|N

]

= ρ0

√

N

β|m̃|
v̂20
2
2n−1n!

√
π
k

ω̂

2ω̂N2k +N2β

|m̃2|ω̂2 −N2k2
. (B1)
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The derivation of (B1) is given in the following.257

n+1
(|m̃|ω̂−Nk)2

+
n

(|m̃|ω̂ +Nk)2
− 1

β|m̃|N

=
(|m̃|2ω̂2 +N2k2)(2n+ 1)− |m̃|2ω̂2 −N2k2 + (|m̃|ω̂ +Nk)2

(|m̃|2ω̂2 −N2k2)2

− (|m̃|2ω̂2 −N2k2){kω̂−1βN2 + (2n+ 1)β|m̃|N}
(β|m̃|N)(|m̃|2ω̂2 −N2k2)2

=
2N2k2(2n+ 1) + 2|m̃|ω̂Nk − (|m̃|2ω̂2−N2k2)βN2k

β|m̃|Nω̂

(|m̃|2ω̂2 −N2k2)2

=
(2N2k2 − kω̂−1βN2)(|m̃|2ω̂2 −N2k2)− 2N4k3ω̂−1β + 2|m̃|2ω̂N2kβ

(β|m̃|N)(|m̃|2ω̂2 −N2k2)2

=
(|m̃|2ω̂2 −N2k2)(2N2k2 + kω̂−1βN2)

(β|m̃|N)(|m̃|2ω̂2 −N2k2)2

=
k

ω̂

2ω̂N2k +N2β

(β|m̃|N)(|m̃|2ω̂2 −N2k2)
. (B2)

Thus, meridional integral of F
(EQ)
11 becomes equal to that of 3D wave activity flux applicable258

to inertia-gravity waves.259

APPENDIX C260

Another expression of u′η′261

In this section, we introduce another expression of u′η′ without using parcel displace-262

ments.263

From meridional derivative of (2.1a), meridional derivative of (2.1b), (2.1c), and vertical264

derivative of (2.1d), perturbation potential vorticity equation is expressed as follows.265

D̄q′ + βv′ = 0, q′ = v′x − u′
y +

βy

N2
ρ−1
0 (ρ0Φ

′
z)z. (C1)

Substituting (2.13b), (2.14a) and (2.14b) into (C1), perturbation potential vorticity q′ is266

expressed in terms of v̂0 as follows.267
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v′x = ikv̂0Hne
−Y 2/2, (C2a)

− u′
y = −iv̂0

√

β|m̃|
N

√

β|m̃|N d

dY

(

1/2Hn+1

|m̃|ω̂ −Nk
+

nHn−1

|m̃|ω̂ +Nk

)

e−Y 2/2

= iv̂0β|m̃|Y
(

1/2Hn+1

|m̃|ω̂ −Nk
+

nHn−1

|m̃|ω̂ +Nk

)

e−Y 2/2

− iv̂0β|m̃|
(

(n+ 1)Hn

|m̃|ω̂ −Nk
+

−nHn + 2Y nHn−1

|m̃|ω̂ +Nk

)

e−Y 2/2, (C2b)

βy

N2
ρ−1
0 (ρ0Φ

′
z)z = −iv̂0

βy

N
|m̃|2

√

βN3

|m̃|

(

1/2Hn+1

|m̃|ω̂ −Nk
− nHn−1

|m̃|ω̂ +Nk

)

e−Y 2/2

= −iv̂0β|m̃|Y
(

1/2Hn+1

|m̃|ω̂ −Nk
− nHn−1

|m̃|ω̂ +Nk

)

e−Y 2/2, (C2c)

and268

q′ = iv̂0

{

kHn − β|m̃|
(

(n+ 1)Hn

|m̃|ω̂ −Nk
− nHn

|m̃|ω̂ +Nk

)}

e−Y 2/2

= iv̂0

{

kHn − β|m̃(2n+ 1)Nk + |m̃|ω̂
|m̃|2ω̂2 −N2k2

}

Hne
−Y 2/2 = iv̂0

β

ω̂
Hne

−Y 2/2, (C2d)

where the dispersion relation of equatorial waves (2.13a) is used in the last line. Thus,269

u′η′ = −u′q′

β
. (C3)

It should be noted that this expression can be used for all equatorial waves.270
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